
Technical University of Crete, Greece

School of Electronic and Computer Engineering

Algorithm Modeling for Hardware

Implementation of a Blokus Duo Player

Sofia Maria Nikolakaki

Thesis Committee

Professor Apostolos Dollas (ECE)

Professor Minos Garofalakis (ECE)

Associate Professor Ioannis Papaefstathiou (ECE)

Chania, February 2014

http://www.tuc.gr
http://www.ece.tuc.gr

Sofia Maria Nikolakaki ii February 2014

Πολυτεχνειο Κρητης

Σχολη Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Μοντελοποίηση Αλγορίθμων για

Υλοποίηση σε Υλικό για το Παιχνίδι

Blokus Duo

Σοφία Μαρία Νικολακάκη

Εξεταστική Επιτροπή

Καθ. Απόστολος Δόλλας (ΗΜΜΥ)

Καθ. Μίνως Γαροφαλάκης (ΗΜΜΥ)

Αναπλ. Καθ. Ιωάννης Παπευσταθίου (ΗΜΜΥ)

Χανιά, Φεβρουάριος 2014

http://www.tuc.gr
http://www.ece.tuc.gr

Sofia Maria Nikolakaki iv February 2014

Abstract

Artificial Intelligence has a profound impact on a wide range of scientific fields and

has been well applied especially in game playing. Until recently, the dominance of the

Minimax algorithm in two player zero-sum games was indisputable, since it guaranteed

an optimal solution as long as the search reached a certain tree depth. However, it

required configuration of a good heuristic function and sometimes a prohibitive amount

of execution time. This led to the design of a new and quite recent algorithm, the

Monte Carlo Tree Search (MCTS) algorithm. MCTS appeared to be promising from the

very beginning since it performed better than state-of-the-art algorithms in the currently

most challenging two player zero-sum game, Go. Over the last seven years, many have

tried to comprehend and evaluate the MCTS algorithm performance by applying it on

different games and by gathering experimental results. Others, have used a variety of

heuristics and techniques to improve the algorithm’s efficiency, thus creating different

MCTS variations. Among these, the most popular one is the Upper Confidence Bound

for Trees algorithm (UCT).

The motivation behind the present work was initiated by the potential for comparing

the performance of MCTS with other algorithms, modeling it for hardware implementa-

tion and improving its efficiency in terms of winning percentage. Therefore, we applied

the algorithm on the game of Blokus Duo, a relatively new game, open for research since

it meets the requirements of MCTS and appears to be demanding. More specifically, we

present four competitive Blokus Duo players and show that the ones, based on Monte

Carlo simulations outperform the Minimax-based one. To the best of our knowledge,

this is the first work that compares for the same game, software-based Minimax, Monte

Carlo and MCTS players. For each of these players we suggest opportunities for hard-

ware implementation and discuss potential bottlenecks. Furthermore, we apply certain

heuristics on our MCTS-based player to understand how they affect the efficiency of the

algorithm specifically for the game of Blokus Duo.

Sofia Maria Nikolakaki vi February 2014

Περίληψη

Ο τομέας της Τεχνητής Νοημοσύνης έχει προκαλέσει αισθητό αντίκτυπο σε ένα ευρύ φάσμα

επιστημονικών πεδίων και εφαρμόζεται ιδιαίτερα σε παιχνίδια. Μέχρι πρόσφατα, η κυριαρχία

του αλγορίθμου Minimax ήταν αδιαμφισβήτη σε zero-sum παιχνίδια με δύο παίκτες, καθώς

εγγυόταν βέλτιστη λύση αρκεί να έφτανε η αναζήτηση σε συγκεκριμένο βάθος του δέντρου.

Ωστόσο, προϋπόθετε την ύπαρξη μίας καλής ευριστικής συνάρτησης και ορισμένες φορές

απαγορευτικό χρόνο εκτέλεσης. Αυτό οδήγησε στο σχεδιασμό ενός καινούριου και αρκετά

πρόσφατου αλγορίθμου, του Monte Carlo Tree Searh (MCTS) αλγορίθμου. Ο MCTS

φάνηκε από την αρχή πολλά υποσχόμενος καθώς είχε καλύτερη απόδοση από state-of-the-

art αλγορίθμους στο τρέχον πιο δύσκολο zero-sum παιχνίδι δύο παιχτών, το Go. Τα τελευ-

ταία εφτά χρόνια πολλοί προσπάθησαν να κατανοήσουν και να αξιολογήσουν την απόδοση

του MCTS , με την εφαρμογή του σε διαφορετικά παιχνίδια και την συλλογή πειραματικών

αποτελεσμάτων. ΄Αλλοι, έχουν χρησιμοποιήσει διαφορετικές ευριστικές μεθόδους και τε-

χνικές, για να να βελτιώσουν την επίδοση του αλγορίθμου, δημιουργώντας έτσι και νέες

παραλλαγές του. Ανάμεσα σε αυτές, η πιο γνωστή είναι ο αλγόριθμος Upper Confidence

Bound for Trees (UCT).

Το κίνητρο για αυτή τη δουλειά προκλήθηκε από τη δυνατότητα σύγκρισης της επίδοσης

τουMCTS με άλλους αλγορίθμους, μοντελοποίησης του για υλοποίηση σε υλικό και βελτίωσης

του ποσοστού νίκης του. Γι΄ αυτό το λόγο, εφαρμόσαμε τον αλγόριθμο στο παιχνίδι Blokus

Duo , ένα σχετικά καινούριο παιχνίδι και ανοιχτό για έρευνα, καθώς ανταποκρίνεται στις

απαιτήσεις του MCTS και φαίνεται να είναι αρκετά δύσκολο. Ειδικότερα, παρουσιάζουμε

τέσσερις ανταγωνιστικούς Blokus Duo παίκτες και δείχνουμε ότι εκείνοι που βασίζονται σε

Monte Carlo προσομοιώσεις αποδίδουν καλύτερα σε σχέση με εκείνον που βασίζεται στον

Minimax αλγόριθμο. Σύμφωνα με τα όσα γνωρίζουμε, η συγκεκριμένη δουλειά είναι η πρώτη

που συγκρίνει για το ίδιο παιχνίδι παίκτες υλοποιημένους σε λογισμικό, που βασίζοντασι

στους αλγορίθμους Minimax, Monte Carlo και MCTS. Για κάθε έναν από αυτούς τους

παίκτες υποδεικνύουμε δυνατότητες για την υλοποίηση τους σε υλικό και αναφέρουμε πι-

θανά bottlenecks. Επιπλέον, εφαρμόζουμε συγκεκριμένες ευριστικές μεθόδους στον παίκτη

που βασίζεται στον MCTS αλγόριθμο, ώστε να καταλάβουμε πώς επηρεάζουν την απόδοση

του αλγορίθμου, ειδικά για το παιχνίδι του Blokus Duo.

Sofia Maria Nikolakaki viii February 2014

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor, Prof. Apostolos

Dollas, for his trust, enthusiasm, continuous guidance from the very beginning and for

our fruitful discussions concerning my future steps. I would also like to thank Prof. Minos

Garofalakis and Prof. Ioannis Papaefstathiou for accepting to be in my committee.

I am also deeply grateful to Prof. Stavros Christodoulakis for inspiring me throughout

the first years of my studies and for providing me the right incentives to excel.

Furthermore, I would like to thank Pavlos Malakonakis for his assistance whenever

needed and for our cooperation, as well as Nikolaos Kofinas and Ioakeim Perros for not

only being good friends to me, but for also offering me fine suggestions regarding my

thesis.

My parents, Ioannis and Souzana, as well as my beloved younger brother, Emmanouil

for always being my role models in matters of morals and principles, for loving me and

for inspiring me to follow their steps.

I am thankful to my dear Ioannis Demertzis for encouraging and supporting me

unconditionally, in the last few years.

Last but definitely not least, my two best friends Theoni Magounaki and Dimitra

Paliatsa for believing in me, for being beside me no matter what and for crafting with

me memories that I will always cherish. I would also like to thank all my friends for all

the moments, surprises and experiences that we shared together.

Sofia Maria Nikolakaki x February 2014

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 The Game of Blokus Duo . 5

2.1.1 History . 5

2.1.2 Rules . 6

2.1.3 Strategy Tips . 7

2.1.4 Existing Programs . 11

2.2 Decision theory . 11

2.2.1 Markov decision processes . 12

2.2.2 Applications . 14

2.3 Game theory . 15

2.3.1 Games . 15

2.3.2 Game tree . 16

2.3.3 Combinatorial games . 16

2.4 Minimax with alpha-beta pruning . 17

2.4.1 Minimax with alpha-beta pruning Algorithm 17

2.4.2 Complexity . 18

2.5 Monte Carlo Methods . 19

2.5.1 Monte Carlo simulations . 20

2.5.2 Uniform sampling in Monte Carlo 21

2.6 Bandit-Based Methods . 21

2.6.1 Multi-armed bandit problems . 21

Sofia Maria Nikolakaki xi February 2014

CONTENTS

2.6.2 Regret . 22

2.6.3 UCB1 . 23

2.7 Monte Carlo Tree Search . 24

2.7.1 MCTS Development . 24

2.7.2 MCTS Characteristics . 25

2.7.2.1 Benefits . 25

2.7.2.2 Drawbacks . 26

2.7.3 MCTS Algorithm . 26

2.7.3.1 Selection . 28

2.7.3.2 Expansion . 28

2.7.3.3 Simulation . 29

2.7.3.4 Backpropagation . 29

2.7.3.5 Final move selection . 29

2.7.4 Upper Confidence Bounds for Trees - UCT 30

2.7.5 MCTS Enhancements . 31

2.7.5.1 Selection phase . 31

2.7.5.2 Simulation phase . 33

3 Related Work 35

3.1 Blokus Duo . 35

3.1.1 Blokus Duo MCTS approach . 35

3.1.2 Blokus Duo Minimax based agents 36

3.2 Open source Go MCTS implementations 39

3.2.1 Fuego 1.1 Version . 39

3.2.2 Pachi 10.0 Version . 40

4 Implementation 43

4.1 Blokus Duo components . 43

4.1.1 Tiles . 44

4.1.2 Game Board . 44

4.1.3 Software Implementation . 44

4.1.4 Hardware Implementation . 45

4.2 Minimax with alpha-beta pruning player 45

4.2.1 Software Implementation . 45

4.2.1.1 Minimax Structures . 46

Sofia Maria Nikolakaki xii February 2014

CONTENTS

4.2.1.2 Minimax Algorithm . 46

4.2.2 Modeling for Hardware Implementation 49

4.2.2.1 Code Profiling . 49

4.2.2.2 Memory Requirements 50

4.2.2.3 Potential Parallelism . 50

4.2.2.4 Potential Bottlenecks . 51

4.2.3 Hardware Implementation . 51

4.3 MCTS player . 53

4.3.1 Software Implementation . 53

4.3.1.1 MCTS structures . 53

4.3.1.2 MCTS Algorithm . 55

4.3.2 Modeling for Hardware Implementation 58

4.3.2.1 Code Profiling . 58

4.3.2.2 Memory Requirements 58

4.3.2.3 Potential Parallelism . 59

4.3.2.4 Potential Bottlenecks . 60

4.4 Monte Carlo player . 61

4.4.1 Software Implementation . 61

4.4.1.1 Monte Carlo structures 61

4.4.1.2 Monte Carlo Algorithm 62

4.4.2 Modeling for Hardware Implementation 63

5 Optimizations on MCTS 65

5.1 Selection Policies . 65

5.1.1 UCB1 Adjustment . 65

5.1.2 UCB1-Tuned . 66

5.2 Selection Phase . 67

5.2.1 First Play Urgency (FPU) . 67

5.2.2 Progressive Bias . 69

5.3 Simulation Phase . 70

5.3.1 Evaluation Function . 72

5.3.2 Score Bonus . 73

5.3.3 Best Combination of Optimizations 73

Sofia Maria Nikolakaki xiii February 2014

CONTENTS

6 Comparison of players 77

6.1 Comparison of UCT with Monte Carlo 77

6.2 Comparison of UCT with Minimax . 79

6.3 Comparison of Monte Carlo with Minimax 80

6.4 Comparison of Enhanced MCTS with UCT 82

6.5 Comparison of Enhanced MCTS with Monte Carlo 83

6.6 Comparison of Enhanced MCTS with Minimax 85

7 Conclusion and Future Work 87

7.1 Conclusion . 87

7.2 Future Work . 88

References 91

Sofia Maria Nikolakaki xiv February 2014

List of Figures

2.1 Tiles of the Blokus Duo game. Each tile comprises from one to five units. 8

2.2 Board of the Blokus Duo game. Square 1 indicates the starting point of

player 1 and square 2 indicates the starting point of player 2. 9

2.3 The purple tiles are connected with a corner-to-corner contact. 10

2.4 The left move is allowed, since same colored tiles are connected with a

corner-to-corner contact but do not have any edge-to-edge contact. The

right move is prohibited, since the purple tiles have an edge-to-edge contact. 11

2.5 An example snapshot of the game. 12

2.6 An example of a completed game. The orange player placed all of his tiles,

hence he gets a bonus of 15 points. The purple player did not place 2 three-

unit tiles and a four-unit tile. Therefore, his score is 2∗(−3)+(−4) = −10.

The orange player has the highest score and is the winner of this game. . 13

2.7 Important areas on the Blokus Duo gameboard 14

2.8 Four phases of the MCTS algorithm. 30

4.1 Minimax core module. 52

4.2 Minimax controller’s FSM . 53

5.1 Winning percentage for different Cp values 66

5.2 Comparison between UCB1 and UCB1Tuned policies. The first value in

each cell denotes the player’s percentage of won games and the second the

mean value of all the scores of the player. 67

5.3 Comparison between Heuristic, 10000 and 0.1 FPU values. The first value

in each cell denotes the player’s percentage of won games and the second

the mean value of all the scores of the player. 69

Sofia Maria Nikolakaki xv February 2014

LIST OF FIGURES

5.4 Comparison between the UCT algorithm enhanced with the Progressive

Bias technique that uses the evaluation function and the normal UCT

algorithm. The first value in each cell denotes the player’s percentage of

won games and the second the mean value of all the scores of the player. 71

5.5 Comparison between the UCT algorithm enhanced with the Progressive

Bias technique that counts the units of the tile and the normal UCT algo-

rithm. The first value in each cell denotes the player’s percentage of won

games and the second the mean value of all the scores of the player. . . . 71

5.6 Comparison between the UCT algorithm enhanced with the Evaluation

Function technique that uses the a heuristic function and the normal UCT

algorithm. The first value in each cell denotes the player’s percentage of

won games and the second the mean value of all the scores of the player. 72

5.7 Comparison between the UCT algorithm enhanced with the Evaluation

Function technique that counts the units of the tile and the normal UCT

algorithm. The first value in each cell denotes the player’s percentage of

won games and the second the mean value of all the scores of the player. 73

5.8 Comparison between the UCT algorithm enhanced with the Score Bonus

technique that uses the first family of scores and the normal UCT algo-

rithm. The first value in each cell denotes the player’s percentage of won

games and the second the mean value of all the scores of the player. . . . 74

5.9 Comparison between the UCT algorithm enhanced with the Score Bonus

technique that uses the second family of scores and the normal UCT algo-

rithm. The first value in each cell denotes the player’s percentage of won

games and the second the mean value of all the scores of the player. . . . 74

6.1 Comparison between Monte Carlo Tree Search and Monte Carlo players

when UCT plays first. Blue indicates UCT and gray indicates MC. The

first value in each cell denotes the player’s percentage of won games and

the second the mean value of all the scores of the player. 78

6.2 Comparison between Monte Carlo Tree Search and Monte Carlo players

when MC plays first. Blue indicates UCT and gray indicates MC. The

first value in each cell denotes the player’s percentage of won games and

the second the mean value of all the scores of the player. 79

Sofia Maria Nikolakaki xvi February 2014

LIST OF FIGURES

6.3 Comparison between Monte Carlo Tree Search and Minimax players when

UCT plays first. Blue indicates UCT and gray indicates Minimax. The

first value in each cell denotes the player’s percentage of won games and

the second the mean value of all the scores of the player. 81

6.4 Comparison between Monte Carlo Tree Search and Minimax players when

Minimax plays first. Blue indicates UCT and gray indicates Minimax.

The first value in each cell denotes the player’s percentage of won games

and the second the mean value of all the scores of the player. 81

6.5 Comparison between Monte Carlo and Minimax players when MC plays

first. Blue indicates Monte Carlo and gray indicates Minimax. The first

value in each cell denotes the player’s percentage of won games and the

second the mean value of all the scores of the player. 82

6.6 Comparison between Monte Carlo and Minimax players when Minimax

plays first. Blue indicates Monte Carlo and gray indicates Minimax. The

first value in each cell denotes the player’s percentage of won games and

the second the mean value of all the scores of the player. 83

6.7 Comparison between Enhanced MCTS and UCT players when Enhanced

MCTS plays first. Blue indicates Enhanced MCTS and gray indicates

UCT. The first value in each cell denotes the player’s percentage of won

games and the second the mean value of all the scores of the player. . . . 84

6.8 Comparison between Enhanced MCTS and UCT players when UCT plays

first. Blue indicates Enhanced MCTS and gray indicates UCT. The first

value in each cell denotes the player’s percentage of won games and the

second the mean value of all the scores of the player. 84

6.9 Comparison between Enhanced MCTS and Monte Carlo players when En-

hanced MCTS plays first. Blue indicates Enhanced MCTS and gray in-

dicates Monte Carlo. The first value in each cell denotes the player’s

percentage of won games and the second the mean value of all the scores

of the player. 86

6.10 Comparison between Enhanced MCTS and Monte Carlo players when

Monte Carlo plays first. Blue indicates Enhanced MCTS and gray in-

dicates Monte Carlo. The first value in each cell denotes the player’s

percentage of won games and the second the mean value of all the scores

of the player. 86

Sofia Maria Nikolakaki xvii February 2014

LIST OF FIGURES

Sofia Maria Nikolakaki xviii February 2014

Chapter 1

Introduction

Artificial Intelligence (AI) is a term frequently encountered in every day life, thus proving

its significant applicability on a wide range of fields. Among these fields, some of the

more popular ones include playing games competitively and decision theory problems.

Until recently in order to find a solution to these types of problems, the primarily sug-

gested techniques were knowledge-based approaches and the Minimax algorithm with a-b

pruning. However, both solutions perform poorly when decision making problems have

either one or more of the following properties: a high branching factor, a deep tree or

a moderate heuristic function to evaluate non-terminal nodes. An example of such a

problem that comprises these properties is the game of Go, where the game has approxi-

mately 200 moves, there are about 250 legal moves per round and there is no knowledge

of a reliable heuristic function for non-terminal states. It is a game that attracts the

interest of many computer scientists since humans are nuch better players than the best

known Go programs. This led to the development of the MCTS algorithm that seems to

be more appropriate for such challenges. MCTS is an anytime and aheuristic algorithm

that works based on statistics and usually the longer the execution time lasts, the better

the performance. There are cases reported, such as in the game of Go, where MCTS

based agents are the strongest computer players. Hence, it is evident that MCTS is

promising and capable of succeeding on daunting problems where other techniques fail.

Its efficieny can be attributed to the fact that it does not evaluate intermediate game

positions, as Minimax does, but conducts a broader and more robust search. The most

prominent algorithm in the MCTS family appears to be the Upper Conficence Bounds

Sofia Maria Nikolakaki 1 February 2014

1. INTRODUCTION

for Trees algorithm (UCT), due to the fact that it is simple to implement and guaran-

tees to be within a constant factor of the best possible bound on the growth of regret.

In general, MCTS approaches are applied on combinatorial games, single player games,

non-determininstic games as well as non-game applications, such as combinatorial opti-

mazation and scheduling problems. In order to be able to study and evaluate the MCTS

algorithm we decided to apply it on a game that is characterized by properties appro-

priate for the particular algorithm. Therefore we concluded on the game of Blokus Duo,

a perfect information two player zero-sum game with a finite number of moves and no

chance elements a.k.a a combinatorial game. The specific game drew our interest because

it was the challenge of the ICFPT 2013 design conference, it is relatively new with few

published heuristic functions but, most importantly, the first levels of the tree created

have an exponentially increasing number of children nodes and the number of candidates

is sometimes over 1000, properties that indicate its demanding nature. Also it appears

to be quite similar to Go since each player focuses on gaining the largest owned area

in order to win a game, but has a much smaller game size of maximum 42 moves that

renders it appropriate for the MCTS method. Due to the fact that MCTS was developed

recently, scientists are still trying to comprehend basic factors of the algorithm and how

they affect its overall performance. Therefore MCTS is applied on a variety of problems

and in each one modifications are made in order to understand the impact of different

parameters.

1.1 Thesis Contribution

The ICFPT 2013 conference proposed the game of Blokus Duo as the challenge for its

design competition, thus showing that it is at least an intriguing game. While preparing

for this competition we studied algorithms that could create an efficient Blokus Duo

player and concluded that Minimax, Monte Carlo and MCTS seemed appropriate ones.

However, due to the competition’s time and memory restrictions we decided to implement

a basic Minimax hardware-based Blokus Duo player and did not get involved with the

other two algorithms. Within this work, we decided to implement in software all three

algorithms and study their performance for the specific game, as well as compare their

efficiency in terms of time and memory resources. To the best of our knowledge no

previous work has conducted such a comparison, given that the MCTS algorithm was

Sofia Maria Nikolakaki 2 February 2014

http://lut.eee.u-ryukyu.ac.jp/dc13/
http://www.fpt2013.org/

1.2 Thesis Outline

published quite recently. Furthermore, we introduce an enhanced Blokus Duo player

based on the Upper Confidence Bounds for Trees algorithm (UCT) of the Monte Carlo

Tree Search family. Each step of the development process, as well as the incentive behind

of every modification is described in section 5. According to the Monte Carlo Tree

Search Methods 2012 Survey [1], research directions incline to apply different techniques

in conjuction with the general-purpose UCT algorithm to improve its performance. The

discrete stages of the UCT algorithm allow it to be hybridised with a wide range of other

approaches, especially heuristic evaluations of intermediate states and knowledge based

approaches. We applied suggested techniques to improve our player and study their

impact on the execution time and winning percentage factors. Moreover, for each of the

Blokus Duo players we provide opportunities, suggestions and expected bottlenecks for

hardware implementations. These are primarily defined by the nature of the algorithm,

such as whether it is recursive or not, memory requirements etc. They also depend on

the elements of the game, such as the rules, the components and others.

1.2 Thesis Outline

Chapter 2 introduces us to the Monte Carlo Tree Search approaches by presenting thor-

ougly the transition from the Monte Carlo simulations to the UCT algorithm. Further-

more, the rules of the Blokus Duo game are described in this section, as well as critical

strategies followed by professional players. These strategies provided us with useful infor-

mation, necessary for the heuristics that would be implemented. We also present a brief

view of the scientific field we are studying emphasizing on techniques that appeared to

be useful during the development of our enhanced agent. Chapter 3 sums up significant

attempts made in the field to improve the basic UCT algorithm for various games, as

reported in the literature. This overview indicates techniques proven to be successful

and highlights approaches that have not been yet taken into account. We also refer to

previous works concerning the Blokus Duo game, some of which were recently published

in the ICFPT 2013 conference. In Chapter 4 we present how the Blokus Duo players

were implemented and mention all data structures that were used, as well as the exe-

cution flow of the algorithm. We also analyze hardware opportunities and bottlenecks

that these algorithms offer. In Chapter 5 we describe all heuristics that were applied

to the general-purpose UCT algorithm to improve its performance and discuss whether

Sofia Maria Nikolakaki 3 February 2014

1. INTRODUCTION

they were eventually effective. In Chapter 6 we conduct a comparison between all four

implemented Blokus Duo players and comment on the results. Finally, in Chapter 7 a

conclusion about the presented work is provided, followed by future work directions that

are worth considering.

Sofia Maria Nikolakaki 4 February 2014

Chapter 2

Background

2.1 The Game of Blokus Duo

Blokus Duo (a.k.a Travel Blokus) is an expansion of the game of Blokus. It is a zero-

sum, perfect information, 2-player game. Given that Blokus Duo is relatively new there

has not been much research conducted on it, which makes it challenging and intriguing.

In the following subsections we first present the history of the Blokus Duo game and

then we explain the rules. Next, we mention some of the properties that characterize the

game and finally we describe existing programs that implement competitive Blokus Duo

players.

2.1.1 History

As stated above, Blokus Duo is an expansion of the main game of Blokus. The latter is a

strategy board game of two or four players, invented by Bernard Travitian. Blokus was

first released in 2000 by the French firm Sekköıa but in 2009 the rights of the game were

passed to the famous toy manufacturing enterprise Mattel. Blokus Duo itself, was first

introduced in 2005, implying that the game is relatively new. However it captured the

interest of the research community in 2013, when it became the challenge of the design

competition of the ICFPT 2013 Design Competition. To the best of our knowledge,

Blokus Duo tournaments are currently held in Asian countries and are less prevalent in

the western community.

Sofia Maria Nikolakaki 5 February 2014

http://en.wikipedia.org/wiki/Blokus
http://lut.eee.u-ryukyu.ac.jp/dc13/

2. BACKGROUND

2.1.2 Rules

In order to explain how the Blokus Duo game is played we adapted the rules published

by Mattel.

Components

• 42 game pieces (tiles) in total - Two 21-piece sets (usually one of orange and one

of purple color). Each set contains 21 pieces of different shape shown in Figure 2.1.

A tile comprises unit squares i.e. the little squares that compose a tile. There is

1x1-unit tile, 1x2-unit tile, 2x3-unit tiles, 5x4-unit tiles and 12x5-unit tiles.

• A game board with 14x14 grid size, i.e. 196 squares.

Goal

Each player aims to place as many of his 21 pieces as possible on the board.

How to play

1 Each player is assigned a color (orange or purple) and gets the respective tiles.

Both players are allowed to flip or rotate any tile before placing it on the board.

2 Whoever decides to play first is deemed as Player 1 and the other player is consid-

ered as Player 2. In the beginning of the game, Player 1 places any tile he wants

in any way at a specific starting point on the board with coordinates (5,5). Then,

Player 2 does the same thing but his starting point has coordinates (10,10) or (a,a)

of the example board in Figure 2.2.

3 The game continues as each player places one piece at a time on the board. The

players play in an alternate manner and should follow the following restrictions:

– The to be placed tile must have at least one corner-to-corner contact with a

tile of the same color, as shown in Figure 2.3

– The to be placed tile must not have edge-to-edge contact with any tile of the

same color, as shown in Figure 2.4

Sofia Maria Nikolakaki 6 February 2014

http://service.mattel.com/instruction_sheets/R1984-0920.pdf

2.1 The Game of Blokus Duo

– Different colored tiles can touch in any manner

– The position of a placed tile cannot be changed until the end of the game.

4 In case a player does not have any legal moves to make or cannot find one, that

player should pass. From that point to the end of the game the player who passed

his turn cannot lay any other piece on the board.

5 The game ends when any of the following conditions are met:

– One of the two players has placed all his tiles on the board

– Both players have passed their turn

6 Once the game has ended, scores are calculated and the player with the highest

score wins.

An example of a game is shown in Figure 2.5

Score

Each player counts the total number of unit squares of their remaining tiles that were

not placed on the board. Each unit square counts as ’-1’ and therefore adding unit squares

gives a negative total. The player who gets the highest score wins. Specific bonuses are

given in the following situations:

• There is a +15 bonus added to any player that places all of his tiles on the board

• Additionally to the previous +15 bonus there is also a +5 one if the last tile placed

on the board is the 1 unit square piece

An example of a completed game and how the score is counted is shown in Figure 2.6

2.1.3 Strategy Tips

As all games, Blokus Duo also has some fine strategic points that may determine the

outcome of the game. We present some of these, to provide a better understanding of

the game.

Sofia Maria Nikolakaki 7 February 2014

2. BACKGROUND

Figure 2.1: Tiles of the Blokus Duo game. Each tile comprises from one to five units.

• Given that the score is computed based on the non-placed unit squares, each player

should aim to minimize this number. Therefore the bigger the tile, the bigger the

urge to place it in the first rounds of the game since later on, it may not fit on the

board. One of the common mistakes that new players make is playing a 4-piece

when a 5-piece can accomplish exactly the same thing. Note that most of the 4-

pieces are contained within quite a few of the 5-pieces and so the latter could be

placed when possible, since they are worth more points

• Each player should try and move towards the center of the board from the beginning

of the game. The center is of great strategic importance because it is both, a safety

net and a control territory. The former, because it provides multidirectional ways

Sofia Maria Nikolakaki 8 February 2014

2.1 The Game of Blokus Duo

Figure 2.2: Board of the Blokus Duo game. Square 1 indicates the starting point of

player 1 and square 2 indicates the starting point of player 2.

out in case a player is blocked and the latter for basically the same reason but

now instead of ways out, the center provides paths that lead to areas that can be

dominated.

• While playing, a player must think forward before deciding to fight or to flight. More

specifically, in a situation where the opponent has claimed a big area somewhere,

one might think of making a move to fight back by reducing the number of the

opponent’s corners or by trying to lessen his space. However this is a risk move

because without realizing it the player might let his opponent invade his small space

while his attack may evidently have no impact. Another approach would require

giving up some space but making it hard for the other player to access the area

you already control. Therefore, before rushing into making any reckless moves, one

should try and figure the opponent’s possible plans and then act appropriately.

Sofia Maria Nikolakaki 9 February 2014

2. BACKGROUND

Figure 2.3: The purple tiles are connected with a corner-to-corner contact.

• The basic principle of Blokus Duo is to cover as much space as possible. Both players

struggle throughout the game to prevail on the space of the board. Whenever a

player controls an area on the board it is more likely that he will dominate it.

Hence, it is important to know which areas are the bigger ones and aim to control

these first. All areas of the board are shown in Figure 2.7.

• Detect areas that are open and have usable space, while making moves that will

either lead towards the direction of these areas or that will yield good plays in that

space later on in the game. For example, one could create available corners in these

areas, in order to link other pieces easily and attempt to contol that space. In

general, due to the corner-to-corner attachment rule, creating corners implies more

available positions to place a tile. However, the same applies for the opponent too

and therefore, a player must focus upon creating corners for himself, while blocking

the opponent’s corners.

Sofia Maria Nikolakaki 10 February 2014

2.2 Decision theory

Figure 2.4: The left move is allowed, since same colored tiles are connected with a corner-

to-corner contact but do not have any edge-to-edge contact. The right move is prohibited,

since the purple tiles have an edge-to-edge contact.

• Some tiles must be placed carefully in the early stages of the game. More specifically,

some tiles are sneaky ones as they do not only provide corners but they are also

flexible to fit in small holes. If played appropriately, they can assist other tiles to

be placed towards the end of the game, when each player tries to have as few tiles

as possible left.

2.1.4 Existing Programs

Due to the fact that Blokus Duo is a quite recent game compared to other popular AI

games, such as Go and Chess, there are only few reliable Blokus Duo computer programs.

Among these we consider only three reliable, Pentobi, metablok and block’em, all licensed

by GNU. Although Pentobi surpasses by far all other attempts, it does not come with a

documentation while the others mention that they are Minimax based agents.

2.2 Decision theory

The basis of decision theory arises from the combination of the principles of probability

theory and utility theory. Probability theory can be defined as how knowledge affects an

Sofia Maria Nikolakaki 11 February 2014

http://pentobi.sourceforge.net/
http://code.google.com/p/metablok/
http://blockem.sourceforge.net/

2. BACKGROUND

Figure 2.5: An example snapshot of the game.

agent’s belief, while utility theory presents actions that an agent prefers to do. Decision

theory uses both, to form an explicit and thorough framework for decision making in

an environment of uncertainty [2, p. 9]. The main concept of decision theory is that

an agent is rational if and only he selects among all actions, the one that will yield the

highest expected utility, averaged over all the possible outcomes of the action [2, p. 465]

In the following subsections we first define the term Markov decision process that studies

sequential decision problems and then we present key applications in which decision

theory is used.

2.2.1 Markov decision processes

In the case of a fully observable environment, Markov decision process (MDP) is

a stochastic process that uses the Markovian transition model and additive rewards to

model the dynamics of the environment under different actions.

Sofia Maria Nikolakaki 12 February 2014

2.2 Decision theory

Figure 2.6: An example of a completed game. The orange player placed all of his tiles,

hence he gets a bonus of 15 points. The purple player did not place 2 three-unit tiles and

a four-unit tile. Therefore, his score is 2 ∗ (−3) + (−4) = −10. The orange player has the

highest score and is the winner of this game.

Formally MDP is a 4-tuple that comprises the following four components:

• S : A set of states

• A: A set of actions

• T(s,a,s’): A transition model that determines the probability of reaching state s’

if action a is applied to state s.

• R(s): A reward function

Sofia Maria Nikolakaki 13 February 2014

2. BACKGROUND

Figure 2.7: Important areas on the Blokus Duo gameboard

The decision-making process is depicted by sequences of state-action pairs. Each step

requires the transition to a next game state. This state is determined by a probability

distribution which depends on the current state s and the selected action a. In many

cases, an agent might end up in positions that deviate from the initial goal. However he

must be able to adapt to the new environment and make appropriate decisions given the

new situation. Therefore a solution must specify what an agent should do for any state

that is reached and this is defined as a policy. We usually denote policy by PI and PI(s)

is the action recommended by the policy PI for the state s. We aim to converge to an

optimal policy, i.e. the policy that yields the highest expected utility [Norvig 17 pg 615].

2.2.2 Applications

The name alone of decision theory implies its application on various decision problems.

More specifically, it helps reach rational decisions in significant domains, where deter-

Sofia Maria Nikolakaki 14 February 2014

2.3 Game theory

mining actions is crucial and the stakes are high. Examples of such fields are business,

government, law, military strategy, medical diagnosis and public health, engineering de-

sign and resource management [2, p. 604]

2.3 Game theory

Game theory studies interactions that occur among rational agents in situations of

competition, in order to achieve the best outcome in a game. Given that a game is

entirely defined by decisions that lead to actions, one realizes that game theory is an

extend of decision theory in the domain of games. Games are in general, an intriguing

class of decision problems, as they have practical significance and their solutions can be

easily extended to other problems too. In the following subsections we first present what

is a game in the sense of game theory, we mention the basic elements of a game tree

and finally, we define the term combinatorial games that consists of a class of games

frequently used in game theory.

2.3.1 Games

Games have always been played among people, but their theoretic approach is a matter

of the last century. A precise definition of a game is given by Salen and Zimmernan

in [3]. A game is a system in which players engage in an artificial conflict, defined by

rules, that results in a quantifiable outcome. The formulation of the above definition

was completed after studying essential elements of many game definitions, given in prior

studies. According to [4], significant components of a game are the following:

• Players

• Actions

• Payoffs

• Information

By putting together these elements we get the rules of a game that aim to describe any

game situation. A game player is an individual that throughout the game, performs

actions that will eventually maximize his rewards. Therefore he devises plans, known

Sofia Maria Nikolakaki 15 February 2014

2. BACKGROUND

as strategies, that point out which actions are appropriate to make, given any current

useful information provided by the game. The interaction between different strategies

determines the final outcomes and is the equilibrium of the game. An action or a move by

a player is a choice he must make and in most parts of the game there is a set of actions

he can perform. A player’s payoff is a value that depends on the strategies followed

throughout the game and is calculated based on a utility function. This value is usually

arbitrary and can either be positive, indicating the number of accumulated points, or

negative implying momentary loss. However, the reward in final game states is typically

depicted by the values +1,0,-1, showing win, draw or loss respectively. Finally, the term

game scenario is frequently encountered to describe all steps that occur in a game starting

from the beginning of the game or from a current position until the very end of it.

2.3.2 Game tree

A game tree (or, game in extensive form) is a directed graph whose nodes are game

states and the oriented edges represent possible moves that can be performed from a given

node-state. The root of the tree depicts the initial or current position of the game, while

the leaves of the tree indicate terminal states of the game. Game trees are important

to AI, since they constitute a formal description of how a non-cooperative game can be

played, thus allowing search for different outcomes and scenarios to be performed on the

game.

2.3.3 Combinatorial games

What distinguishes combinatorial games from classic games is that they are bounded by

a specific set of conditions:

• 2-player : A game played by two players.

• Zero-sum: A player’s gain or loss is exactly balanced by the losses or gains of the

rest. If the total gains of the participants are added up, and the total losses are

subtracted, these will sum to zero.

• Perfect Information: Players are fully aware of the board condition and the set of

available moves

Sofia Maria Nikolakaki 16 February 2014

2.4 Minimax with alpha-beta pruning

• Deterministic: There are no chance elements in the game

• Finite: The game ends in a finite number of moves no matter how it is played

Well known combinatorial games are Chess, Go, Tic-Tac-Toe or Nim. Note, that solitaire

puzzles can also be considered as combinatorial games, assuming that the participting

two players are the puzzle designer and the puzzle solver.

2.4 Minimax with alpha-beta pruning

In actual games it is common to evaluate a player’s performance in the terminal states

of a game. That’s why many algorithms use game trees to depict possible complete

scenarios and outputs of the game. Minimax with alpha-beta pruning is until recently,

the most applied algorithm on combinatorial games that involves a game tree.

2.4.1 Minimax with alpha-beta pruning Algorithm

Minimax with alpha-beta pruning is an algorithm that takes into account every

possible move that the opponent might make and performs a recursive depth-first search

exploration with ”back-ups”. The goal of Minimax is to estimate the best move in the

actual game round and thus the information from the game tree is used appropriately. In

order to evaluate game states, Minimax with alpha-beta uses the Minimax value which

is defined as follows:

Minimax-value(n)=

UTILITY(n) If n is a terminal node

maxsinsuccessors(n) Minimax-value(s) If n is a MAX node

minsinsuccessors(n) Minimax-value(s) If n is a MIN node

MAX selects the move that maximizes the Minimax value, while MIN selects the move

that minimizes the Minimax value. The utility value calculated in terminal states repre-

sents a player’s strategy, since it sums up all the factors that the player considers possible

to maximize the likelihood of winning. Furthermore, the utility value is propagated from

each leaf towards its predecessors, selecting either the minimum or the maximum value at

each level. The first, is propagated whenever the opponent selects a move, since he desires

Sofia Maria Nikolakaki 17 February 2014

2. BACKGROUND

to minimize our score, while the latter is the reverse case, since we desire to maximize

our score and play the best move.

Note, that the number of game states to evaluate is exponential in the number of

moves. In order to avoid evaluating game states that will evidently not affect the overall

Minimax-value, the alpha-beta pruning method that practices a commonly used branch

and bound technique is applied. Usually, the pruning that occurs does not only remove

leaf nodes but entire subtrees too, thus making alpha-beta quite effective. Its basic

principle is simple: Let us consider that from a current state the player has only one

valid move to perform depicted by node n somewhere in the tree. If the player could

select a better move m either at the parent node of n or at any point further up, then

n will never be reached in the actual play. Hence, once we have reached that conclusion

about n we can prune it. The alpha parameter is the value of the highest-value choice we

have found so far at any choice point along the path of MAX, while the beta parameter

is the value of the lowest-value choice we have found so far at any choice point along

the path of MIN. Consequently, MAX nodes with a value higher than beta are pruned

since MIN would never let us reach them and MIN nodes with a value lower than alpha

are also pruned since MAX would never let us reach them [2, p. 169]. The respective

pseudocode is presented in 1.

2.4.2 Complexity

• Time Complexity: O(b
d
2), where b is the average or constant branching factor and

d the search depth of plies. In the case of a pessimal move ordering the maximum

number of leaf node positions evaluated is O(b∗ b∗ b..b∗) = O(bd) which is the same

as simple Minimax search. However, if the best moves are always searched first the

time complexity reduces to O(b
d
2) allowing the search to go twice as deep with the

same amount of computation.

• Space Complexity: O(b ∗ d), where b is the average or constant branching factor

and d the search depth of plies.

Sofia Maria Nikolakaki 18 February 2014

2.5 Monte Carlo Methods

Algorithm 1 Minimax with alpha-beta pruning

1: function Minimax(node,depth,min,max)

2: if depth == 0 or Leaf(node) then return Evaluate(node)

3: if node is MAX then

4: u← min

5: for all children of node do

6: value←Minimax(child, depth− 1, u,max)

7: if value > u then

8: u← value

9: if u > max then return max
return u

10: if node is MIN then

11: u← max

12: for all children of node do

13: value←Minimax(child, depth− 1,min, u)

14: if value < u then

15: u← value

16: if u < min then return min
return u

2.5 Monte Carlo Methods

In general, Monte Carlo (MC) approaches constitute a broad class of algorithms that

repeatedly perform random statistical sampling experiments to provide approximate so-

lutions to a variety of problems. The accuracy of the solution depends on the number

of experiments that are conducted. MC methods have a significant impact on the field

of AI for games and this, will be our main concern in this section. However, it is also

applied in numerous other fields, such as physical sciences, engineering, applied statistics,

finance and business.

In order to comprehend the basics of MC we formulate it with the use of mathematical

terms: Consider a random variable X with a probability density function fX(x) which

is greater than zero on a set of values X and a function g of X. Assuming that X is

continuous, we get an n-sample of X, such as (x(1), ..., x(n)), and we calculate the mean

Sofia Maria Nikolakaki 19 February 2014

2. BACKGROUND

of g(x) over the sample. Then we get the Monte Carlo value:

gn(x) =
1

n

n∑
i=1

g(x(i)) (1)

2.5.1 Monte Carlo simulations

In combinatorial game scenarios where each player follows his own strategy the final result

may vary, implying uncertainty. The key feature of Monte Carlo simulations is that

it models complete game scenarios and estimates how likely a resulting outcome is. For

example, assuming that a player wants to perform a specific action, then by performing

Monte Carlo simulations from that move and onwards in the game he can evaluate how

likely this move will yield a win, a loss or a draw. A Monte Carlo simulation performs

complete game scenarios by selecting a new random move in each game state until it has

reached a terminal state. The final result (a win, a loss or a draw), as well as the initial

random move that was made are stored and the process is executed repeatedly, as many

times as possible, given that in real games there are usually time or resource limitations.

Typically, hundreds or thousands of Monte Carlo simulations are performed in a single

game round, each time using different randomly selected values throughout the game.

By the end of the procedure we get a big number of recorded result-initial move pairs

that are used to calculate the probability of reaching various outcomes.

Now that we have described how a Monte Carlo simulation method works, we adopt

the notion of Gelly and Silver [5] and rewrite equation (1) in terms of a combinatorial

game:

Q(s, a) =
1

N(s, a)

N(s)∑
j=1

Ij(s, a)zj (2)

where, Q(s, a) is the Monte Carlo value, N(s, a) indicates how many times action a

was chosen from state s, N(s) shows the total number of times that different play-

outs included state s, Ii(s, a) has either value 1 or 0 depending on whether move a was

performed from state s in the j-th simulation or not respectively and finally zj is the

result of the j-th play-out that began from state s.

Sofia Maria Nikolakaki 20 February 2014

2.6 Bandit-Based Methods

2.5.2 Uniform sampling in Monte Carlo

Some Monte Carlo methods perform uniform sampling to select actions. Such approaches

have proven to be in some cases quite competent, as in the case of Sheppard in [6], who

reached the top rankings of the world with such approaches. However in cases where

uniform sampling is not that promising, heuristic biasing can potentially improve the

credibility of the method. More specifically, the selection of a move is biased based

on previous results and therefore the expected value of an outcome computed by the

algorithm differs from the true expected value.

2.6 Bandit-Based Methods

In this section we formalize the properties that describe bandit-based problems and we

provide definitions necessary for the comprehension of a bandit algorithm. Then we

define the term regret, an essential parameter of bandit-based problems that each player

aims to minimize. Finally, we focus on the Upper Confidence Bounds class of approaches

and more specifically on the UCB1 approach.

2.6.1 Multi-armed bandit problems

The fact that in a game the distribution of the resulting outcomes is originally unknown

for each action, led to the exploration-exploitation dilemma. More specifically, it is

common for some to require a balance between exploitation-exploration, while others

might want to regulate this trade-off under some considerations. Exploitation concerns

moves that appear to be promising and exploration takes into regard those, that may seem

suboptimal. The role of the mult-armed bandit problem is to model this exploitation

exploration dilemma. The term multi-armed bandit derives from the analogy of the

problem with a slot machine with multiple arms. In this analogy a player chooses a

specific one from the finite number of the machine’s arms. The reward that he gets

is a sample from a certain probability distribution related to the selected arm. The

ultimate goal of the player is to maximize the total reward through repetitive plays. This

cumulative reward is equal to:

Rt = rt+1 + rt+2 + rt+3 + ... =
∞∑
k=1

rt+k (3)

Sofia Maria Nikolakaki 21 February 2014

2. BACKGROUND

A formulation of the multi-armed bandit problem follows:

Formulation of the multi-armed bandit problem: We consider a fixed number of

arms N . The reward received when choosing arm i is a sample from a distribution Pi.

Both this distribution and the expection of arm µi are unknown to the player. Successive

plays of bandit i yields rewards which are identically and independently distributed (iid).

Note, that the finite number of arms allows the conduction of numerous experiments.

In some cases all available arms are explored multiple times, thereby approximating more

precise averages µi and estimating the sample distribution of each arm. Hence, the player

can decide to exploit bandits that currently appear promising due to their high averages.

Also a policy may be chosen to indicate which arm to play at each time step t. This

policy is usually formed based on observed past rewards.

2.6.2 Regret

One of the most fundamental performance measure in multi-armed bandit problems is

regret, since it is a measure of success in the exploration-exploitation dilemma. Regret

is defined as the expected difference between the best possible cumulative reward and

the sum of rewards actually gained at time step t:

RN =
M∑
i=1

(µ∗ − µi)E[Ti(n)] (4)

where, n indicates the number of games, µ∗n = max{µi : 1 ≤ i ≤ M} i.e. the best

possible expected reward, µi denotes the actual expected reward for arm i and finally

E[Ti(n)] declares how many times arm i is expected to be selected in the first n games.

Choosing the bandit with the currently highest expected reward may not result in the

highest overall reward because another more optimal bandit might not have been detected

yet. Nevertheless, playing a new machine is not necessarily a better solution since its

reward remains unknown and it can increase the regret.

Although regret is more than helpful when we are trying to achieve a good exploitation-

exploration balance, we might eventually aim to bound it to a constant after a certain

number of iterations or a specific amount of execution time. Therefore, lots of studies

have tried to examine the rate of bounds on the expected regret in time and conceive

their dependency on the number of arms N of the bandit problem.

Sofia Maria Nikolakaki 22 February 2014

2.6 Bandit-Based Methods

2.6.3 UCB1

Lai, Robbins et al. proved in [7] that no policy can achieve regret that grows slower than

O(lnn) for a vast class of reward distributions. Hence, a policy is taken into account to

solve the exploration- exploitation dilemma, if the growth of regret is within the constant

factor of the O(lnn) rate.

Auer et al. proposed in [8] the use of certain approaches simple to implement, that

achieve logarithmic regret. One of them is the UCB1 policy, originally suggested by

Agrawal in [9]. UCB1 decreases the number of random simulations for apparent subop-

timal moves, to exploit those that appear to be better. The mathematical formulation

of this policy is:

UCB1(j) = X̄j + C ∗

√
2 ∗ lnn

nj

(5)

where, X̄j denotes the average reward for move j i.e. its winning percentage, n indicates

the total number of executed plays and nj shows how many times bandit j has been

played. Constant C is called the exploration constant and has to be experimentally

tuned to increase or decrease the ration between exploration and exploitation. According

to the literature, the C coefficient may be initially set to C = 1 and either tuned towards

allowing further exploration (C > 1) or towards allowing more exploitation (C < 1).

Nevertheless, it should be appropriately adjusted, as it highly depends on the domain,

the computational resources and the MCTS implementation.

Policy: UCB1

Initialization: Play each machine

Loop:

- Play machine j that maximises: X̄j + C ∗
√

2∗lnn
nj

- Get reward rj

- t = t+ 1 . . .

, where j ∈ 1.., N number of machines

Factor X̄j urges the exploitation of actions that yield higher rewards, while factor
√

2∗lnn
nj

ensures that less visited game states will not be completely neglected.

Sofia Maria Nikolakaki 23 February 2014

2. BACKGROUND

2.7 Monte Carlo Tree Search

The term Monte Carlo Tree Search (MCTS) was first introduced in 2006 by Coulom

in [10]. He proposed an innovative approach that integrated Monte Carlo evaluations

with tree search algorithms. The same year Kocsis & Szepesvári incorporated in [11] the

Upper Confidence Bounds into the MCTS algorithm, creating the UCT variant. Since

2006, there has been a burst in MCTS-based games and applications, especially in cases

where the Minimax algorithm performs poorly. In this section first we explain in detail

the MCTS algorithm. Then, we describe the main properties of the MCTS algorithm

and also provide a brief background of some significant MCTS variations that are taken

into account in this work.

2.7.1 MCTS Development

The inspiration for the development of the MCTS algorithm originates in the Monte

Carlo methods. The term Monte Carlo, was conceived in 1946 by John von Neumann

and Stanislaw Ulam. Initially these methods were applied in physical sciences but later

on proved to be useful in other sciences too, such as engineering, applied statistics and

artificial intelligence (AI) for games. Specifically in the field of AI, which is of our interest,

Monte Carlo methods have been used extensively in various games. Further information

about these methods have already been presented in 2.5. The weakness of the Monte

Carlo methods is that due to the random sampling selection of the actions there are

no game-theoretic guarantees that the algorithm will eventually converge to the optimal

move. The transition from the Monte Carlo methods to the MCTS algorithm was first

presented by Coulom in 2006 [10], where Monte Carlo evaluations were integrated with

tree search. Briefly, the proposed algorithm gradually builds an asymmetric tree and

repeatedly executes random simulations from a current game state to a terminal one. A

current game state is calculated in every iteration and equals the one that has higher

probability of being the best move. The same year another work, this time by Kocsis

& Szepesvári in [12] boosted even more the interest of the research community for this

novel algorithm. Kocsis & Szepesvári proposed adding child selectivity policies to the

MCTS to reduce the error probability, when the algorithm is terminated prematurely.

This probability error depends on the trade-off between exploitation and exploration that

was described in detail in 2.6.1. The key to ensure balance between these two essential

Sofia Maria Nikolakaki 24 February 2014

2.7 Monte Carlo Tree Search

factors is the use of multi-armed bandit policies also described in 2.6.1. It appeared that

the UCB1 selection policy 2.6.3, presented by Auer et al. in [8] was the most promising

among these, in terms of simplicity and efficiency. At the same time, the UCT variant of

the MCTS family of approaches was frequently applied by Go players and results showed

that it was highly effective in cases where other state-of-the-art AI approaches had failed.

2.7.2 MCTS Characteristics

This section presents the benefits and the drawbacks of the MCTS algorithm. The

former, along with the algorithm’s good performance, indicate its significance in solving

challenging games and problems. On the other hand, the latter highlights which parts of

the algorithm need to be enhanced for further improvement.

2.7.2.1 Benefits

The MCTS algorithm is characterized by notable benefits, that distinguish it from other

approaches in the area of AI. These are the following:

• Aheuristic: The MCTS can perform well, even if there is no knowledge of the

domain it is applied on. This is the key characteristic that boosted the algorithm’s

popularity, especially in games where a sufficiently good heuristic function has not

been determined yet, such as in the game of Go.

• Asymmetric: The selection policy used in the family of MCTS algorithms, leads to

an asymmetric tree growth, since MCTS aims to visit more frequently visited nodes

that appear to be promising. More specifically, the construction of the tree is skewed

towards regions of nodes, that are more probable to yield the best possible expected

rewards. Note, that the shape of the tree can lead to a better understanding of the

game.

• Anytime: The anytime characteristic implies that whenever the MCTS algorithm

is stopped, it returns the currently best estimate. This is due to the fact that in the

end of each MCTS iteration all nodes that participated are updated with the new

values. This is a considerable aspect of the algorithm, especially in cases where a

specific amount of execution time is given and the best answer should be received.

Sofia Maria Nikolakaki 25 February 2014

2. BACKGROUND

2.7.2.2 Drawbacks

As all algorithms, MCTS also has disadvantages that are taken into account in many

studies. These are the following:

• Playing Strength: Although the MCTS algorithm is suitable for games with a vast

move space, still in certain situations it fails to find even simple solutions in permiss-

able time. In some cases the algorithm halts prematurely, limiting the exploration

of the search tree and therefore neglecting certain good moves.

• Speed : Even in games with medium complexity, finding a good solution may require

hundreds or millions of simulations and then the search performed in the search

tree is not sufficient and the results are not reliable.

2.7.3 MCTS Algorithm

MCTS is a best-first search algorithm that creates and gradually expands a game tree,

based on the results of random simulations. Once there are no resources left or enough

samples have been gathered, the algorithm determines which is the optimal move based

on values that have been computed for each game state. The pseudo-code for MCTS is

presented in 2 based on [13].

In MCTS, game states are depicted by nodes. Each one of the nodes usually holds

two pieces of information:

• Value: Indicates the winning percentage of the node.

• Counter : Shows the number of times the specific node has participated in a playout.

Usually, in the beginning of the MCTS algorithm the search tree contains only the root.

The algorithm’s structure comprises four basic steps, which are repeated until a terminal

condition is met:

• Select : At this point, the tree is traversed from the root to a node that has not

been entirely expanded yet.

• Expand : A new child is added to the selected node, therefore expanding the tree.

Sofia Maria Nikolakaki 26 February 2014

2.7 Monte Carlo Tree Search

• Simulate: Starting from the expanded node, a self-play is conducted simulating

game scenarios, until a terminal game state is reached.

• Backpropagate: The result received from the simulation is propagated from the

expanded node backwards, to its ancestors, updating simultaneously their overall

reward.

The above four steps are explained in detail, in 2.7.3.1 2.7.3.2 2.7.3.3 2.7.3.5 respectively.

Once the execution of the algorithm is terminated, MCTS returns the best node. The

respective pseudo-code is presented in 2 and is based on [13].

Algorithm 2 Monte Carlo Tree Search pseudo-code

Input: root node

Output: optimal move

1: while (WithinComputationalBudget) do

2: current node← root node

3: % Selection Phase

4: while (current node ∈ SearchTree) do

5: last node← current node

6: current node← Select(current node)

7: % Expand Phase

8: last node← Expand(last node)

9: % Simulation Phase

10: result← Simulation(last node)

11: % Backpropagation Phase

12: while (current node ∈ SearchTree) do

13: current node.Backpropagate(reward)

14: current node.visit number ← current node.visit number + 1

15: current node← current node.parent

16: optimal move = argmaxN∈Nc(root node
(N.best move)

17: return optimal move

Sofia Maria Nikolakaki 27 February 2014

2. BACKGROUND

2.7.3.1 Selection

All MCTS approaches begin with the selection phase. The term selection refers to the

fact that we choose to follow and eventually expand a specific path of the tree. In order

to determine this path, a child selection policy is employed starting from the root and

is repeatedly applied until a leaf node is reached. Note, that leaf nodes either depict

a terminal game state or a game state that has not been expanded yet. The simplest

MCTS approaches use a greedy child selection policy during this first step, i.e. moves that

have highest rewards are selected. However, the child selection policy is responsible for

regulating the exploration-exploitation trade-off that was described in 2.6.1. Balancing

these factors is crucial, since the value of a node alone does not indicate anything. For

example, assume that a node is not extensively explored, due to poor sampling, but

appears to have a high average reward score. This value is probably inaccurate compared

to other ones that may have been derived from numerous playouts. Furthermore, the

selection problem is similar to the multi-armed based problem described in 2.6.1, in a

way that it chooses a next move that will lead to an unpredictable outcome. However, in

the MCTS algorithm several such choices should be made, since starting from the root we

first need to select a node from depth 1, then a node from depth 2, a node from depth 3

and so on. Another reason for which the child selection policy should be chosen wisely, is

because it should be able to distinguish the good first moves. In many games, including

Blokus Duo the game is significantly determined by the first moves. However, typical

selection policies require that all children of a node are visited at least once before any of

them is explored. Therefore, the required time to do so may be completely impractical,

particularly when the game state space is vast at the first levels of the tree. An example

of the selection phase is shown in Figure 2.8.

2.7.3.2 Expansion

In the expansion phase, one or more children nodes are added to the selected node,

therefore expanding the tree. The simplest implementations add one child per simulation.

Usually the number of children added at each expansion step varies, since it depends on

the nature of the game and the computational budget. We assume that the selected node

does not depict a terminal game state. Otherwise, the expansion step of the algorithm is

Sofia Maria Nikolakaki 28 February 2014

2.7 Monte Carlo Tree Search

ignored since only updates will be required. An example of the expansion phase is shown

in Figure 2.8.

2.7.3.3 Simulation

In the simulation phase a complete game scenario takes place to evaluate a certain move.

It starts from the selected node of 2.7.3.1 and performs a self-play until a terminal game

condition is reached. A similar procedure is followed by Monte Carlo based approaches

where each move in the simulated game is selected by random sampling. Random sam-

pling is the default policy of MCTS’s simulation phase too, as it is simple to implement,

domain independent and has low time complexity compared to domain based policies.

Also, it is guaranteed that due to the nature of random sampling the whole game tree will

eventually be covered. Still such simulations are rarely applied since they do not repre-

sent actual rational game players, therefore leading to inaccurate results and redundant

computational cost. An example of the simulation phase is shown in 2.8.

2.7.3.4 Backpropagation

The end of a simulation triggers the final step of every MCTS algorithm, the back-

propagation phase. Clearly the results that were produced in previous stages need to

be recorded. This happens in a ”backwards” manner starting from the expanded node

(from where the simulation began) towards the root of the tree. Each node of the selected

path increments its visit counter and updates the average estimated reward based on the

simulation outcome. Note that this reward may either be the actual final score of the

game (final score model), or an indication of whether the player won or lost, +1 and

-1 respectively (win-or-lose model). An example of the backpropagation phase is shown

in 2.8.

2.7.3.5 Final move selection

According to Chaslot [13] , once the execution of the MCTS algorithm is completed it

places in the actual game the move that is considered as the best. A best move may be

determined according to one of the following ways:

1 Max child : The max child is the child that has the highest value.

Sofia Maria Nikolakaki 29 February 2014

2. BACKGROUND

Figure 2.8: Four phases of the MCTS algorithm.

2 Robust child : The robust child is the child with the highest visit count.

3 Robust-max child : The robust-max child is the child with both the highest visit

count and the highest value. If there is no robust-max child at the moment, more

simulations are played until a robust-max child is obtained [10]

4 Secure child. The secure child is the child that maximizes a lower confidence bound.

However, when only a short thinking time per move was used (e.g., below 1 second),

choosing the max child turned out to be significantly weaker than the rest of the selection

approaches.

2.7.4 Upper Confidence Bounds for Trees - UCT

The Upper Confidence Bounds for Trees algorithm, known as UCT is a Monte Carlo

planning algorithm first introduced by Kocsis & Szepesvári in [11]. It is currently the

most common MCTS approach and is particularly known for its implementation on com-

puter Go agents. This success is due to the fact that it was the first approach that

improved the greedy child selection policy in MCTS 2.7.3.1, by using the UCB1 algo-

rithm 2.6.3 to choose actions. The main difference between the greedy policy and the

UCB1 approach is that the latter introduced an exploration factor that has higher value

Sofia Maria Nikolakaki 30 February 2014

2.7 Monte Carlo Tree Search

in less visited nodes, whereas the former focuses only on exploiting seemingly interesting

moves. Therefore, it ensures focusing on good moves without neglecting others that could

later on be substantial.

Although the UCB1 score, shown in equation 5 is used in most implementations, as it

is simple to calculate and guarantees to be within a constant factor of the best possible

bound on the growth of regret, still it is not the best child selection strategy, as seen in

the work of Tesauro et al. in [14]

2.7.5 MCTS Enhancements

2.7.5.1 Selection phase

In this section we describe enhancements targeted for the selection phase of the MCTS

algorithm. These enhancements involve the bandit-based policy that is selected, the

search that is conducted on the UCT tree, as well as suitable pruning that focuses the

search on critical nodes.

UCB1-Tuned

In addition to UCB1, Auer et al. introduced UCB1-Tuned in [8] and, Gelly and Wang

were the first to apply this policy to the UCT algorithm in [15]. The main diffference

between the two policies is that UCB1-Tuned takes empirical variance into account when

calculating the upper confidence bound, to tune the UCB1 bound more finely. More

specifically they used:

Vj(s, n) = (
1

s

s∑
i=1

X2
j,i)− X̄2

j,s +

√
2 ∗ lnn

s
(6)

This is an estimate upper bound for the variance of the node j, where s shows the

visit count of node j, and n denotes the visit count of the parent node of j. The term

(1
s

s∑
i=1

X2
j,i)− X̄2

j,s computes the variance of node j. The final UCB1-Tuned bandit-based

policy selects the child that maximizes the following value:

X̄j +

√
2 ∗ lnn

nj

min{1

4
, Vj(nj, n)} (7)

Sofia Maria Nikolakaki 31 February 2014

2. BACKGROUND

The results of Auer et al. showed that UCB1-Tuned outperformed UCB1 on all experi-

ments but they could not provide theoretical guarantees for the regret of UCB1-Tuned,

as they do for UCB1.

Other notable bandit based strategies include MOSS [16], Bayesian UCT [14], Hier-

archical Optimistic Optimization [17] and EXP3 [18].

First Play Urgency (FPU)

The notion of First-Play Urgency (FPU) for an MCTS algorithm was first introduced

by Gelly and Wang in [15]. The basic MCTS algorithm suggests that all children of

a parent node are visited at least once before any of them is expanded. However, in

problems where the branching factor is big and the execution time is small some nodes

may be never visited, let alone be exploited. First-Play Urgency suggests that a certain

value should be assigned to each unvisited node. The idea is to select unvisited nodes

according to this value and then once they have been explored at least once, exchange

this value with the selection bandit-based policy. For their Go player MoGo, Gelly and

Wang set the FPU value equal to 1000 to ensure exploration of each move at least once,

before encouraging any exploitation of an already visited move. However, First-Urgency

Play can be used to allow exploitation of promising nodes even from the early stages of

the MCTS algorithm.

Progressive Bias

This technique introduces domain knowledge to lead the search towards potential moves.

Progressive bias was used by Chaslot et al. to improve the performance of their Go

player MANGO [19]. More specifically, they do not use the UCB1 policy but they intro-

duce an additional term:

f(ni) =
Hi

ni + 1
(8)

where, Hi is a heuristic value for the node i and ni denotes the number of times this

node has been visited. During the selection phase, they choose children that maximize

the following value:

X̄j + C ∗

√
2 ∗ lnn

nj

+ f(ni) (9)

Sofia Maria Nikolakaki 32 February 2014

2.7 Monte Carlo Tree Search

In cases where a node has few statistical information, inserting heuristics may be crucial to

quickly find valuable moves. However, the progressive bias term influences the selection

policy, only when a node has been visited few times, since as the number of ni visits

increases, the f(ni) value decreases and the strategy converges to the a selection strategy.

Some approaches suggest that if Hi is slow to compute, then progressive bias should not

be inserted to the selection policy until a node has been visited a fixed number of times.

Therefore the number of simulations and the speed of the MCTS algorithm are not

reduced substantially.

2.7.5.2 Simulation phase

We mentioned in 2.7.3.3 that during the simulation phase of the MCTS algorithm, moves

are selected randomly from a set of available actions, without incorporating any domain

knowledge. However, these simulations rarely resemble actual game scenarios, thus re-

ducing a player’s performance. This led to a class of approaches that aim to enhance the

simulation policy.

Evaluation Function:

One approach suggests the use of an evaluation function to choose a move, instead of

selecting randomly. However, as in Minimax, the evaluation function crucially affects the

outcome of the game, since it biases the player’s game strategy towards either good or

bad moves. Winands and Björnsson describe in [20], that the most effective strategy for

designing an evaluation function is to avoid making bad moves in the beginning of the

game, but playing greedily towards the end.

Score Bonus:

We mentioned in 2.3.1 that the reward value of a final game state is typically +1,0 or

-1, depicting win, draw or loss respectively. It is typical for a UCT implementation to

represent the outcome of the simulation phase with the use of these values. However,

these values simply indicate whethere there was a win, a loss or a draw, but do not

reveal anything about the score difference that occured. For example, moves that led to

a strong or a weak win are not distinguished and are assigned with the same value. A

way to deal with this issue, is by backpropagating different values in the interval [-1; 1]

Sofia Maria Nikolakaki 33 February 2014

2. BACKGROUND

depending on the score difference, but there is no reported case, where this technique

actually improved a player’s strength.

Sofia Maria Nikolakaki 34 February 2014

Chapter 3

Related Work

3.1 Blokus Duo

In this section we focus on works that have created Blokus Duo players. First, we present

the only approach found, that uses the MCTS approach and then we describe four other

Minimax-based implementations.

3.1.1 Blokus Duo MCTS approach

Shibahara and Kotani in [21] proposed an MCTS player for Blokus Duo. As it is men-

tioned in 2.7.3.1, MCTS approaches select moves according to a highest mean value, that

in most cases is the UCB1 policy in 5. Shibahara and Kotani used the winning percentage

value, X̄i to choose moves. In general, the winning percentage may either be calculated

based on the final score model or the win-or-lose model described in 2.7.3.5, although in

most cases the former has proved to be inferior to the latter. However, they conducted

a comparison between the two models in order to study their behavior in the game of

Blokus Duo and for this purpose they implemented a UCT (uses win-or-lose model) and

a UCB (uses final score model) player. The following observations were made:

1 For a small number of simulations, UCB did not perform any different than UCT.

2 Unlike UCB, UCT can hardly exploit advantages of the final score model.

3 The credibility of the final score value depends on the number of simulations per-

formed. The bigger the number of simulations the more accurate the final score.

Sofia Maria Nikolakaki 35 February 2014

3. RELATED WORK

Based on the above conclusions Shibahara and Kotani decided to integrate final score into

the UCT algorithm somewhat efficiently. More specifically, they thought of combining

the two scores, by using a sigmoid function. The formula of the proposed function is the

following:

f(x) =
1

1 + exp−kx
(6)

where, x denotes the final score and k is a constant. Whenever k is increased, it gets

closer to the win-or-lose value and vice versa. Based on observation 3 of 3.1.1 the authors

decided to adjust the value of k acccording to the phase of the Blokus Duo game, since

according to the phase a different number of simulations may be executed. The experi-

mental results showed that with the use of the sigmoid function, the UCT player could

achieve at most 54% winning average and that the final score proved to be effective only

in the final stages of the game. Apart from the experimental results, they also asked 5

Blokus Duo beginners what they thought of the sigmoid function-based player and what

of the win-or-lose-based player. The majority decided that the latter player was stronger,

but the former played in a more humanly manner and was more amusing.

Since both, the MCTS algorithm and the game of Blokus Duo are relatively new, there

were no other works that combined the two. However, due to the fact that the game is

more popular in Asian countries there may be MCTS-based approaches described in a

language we are not familiar with.

3.1.2 Blokus Duo Minimax based agents

Of the three players described in this section the first two were introduced in the recent

FPT 2013 Design Competition. Other players were also presented in the same conference,

but we did not have access to their implementation details.

The first player proposed by Jiu Cheng Cai et al. in [22] is a hardware-based approach.

It implements the basic Minimax algorithm with alpha-beta pruning, with the use of the

LegUp open-source HLS framework. The innovation provided by this work concerns the

heuristic applied by Minimax. More specifically, four criteria are taken into account:

• Number of squares placed on the board

• Number of corners adjacent to an opponent’s tile

Sofia Maria Nikolakaki 36 February 2014

http://lut.eee.u-ryukyu.ac.jp/dc13/

3.1 Blokus Duo

• Influence area: It calculates available empty space around the player’s tiles where

new tiles can be possibly placed.

• Weighted reachability : To calculate this parameter they executed a breadth-first

search (BFS) on the empty squares in the game board. A search is conducted

for each empty square that is diagonally adjacent to a tile. However the search

is conducted in a horizontal and vertical manner, not a diagonal one. During

this procedure, each square is assigned a cost that decreases proportionally to its

distance from the initial square.

Experimental results showed that of all the heuristic parameters, the most significant

ones were first the weighted reachability factor and then the influence area.

The second player proposed by Erik Altman et al. in [23] is also a hardware-based

approach that implements the Minimax algorithm, but there is no mention of any pruning.

The authors aimed to test whether a high-level language can provide results whose quality

could match a hardware designed with standard tools. From the aspect of AI and the

Minimax algorithm they do not describe the evaluation function in an accurate manner.

However, the authors present some of the heuristics they tested during their experiments,

which are the following:

• ”Decreasing width”: The Minimax search seeds the tree with a certain number of

initial moves. For each game state a specific number of children is added and this

number decreases while the depth of the tree increases. Once a few moves have

been searched ahead, the width parameter descends to 1. At subsequent depths

only the best move of each position is evaluated.

• Square influence: Similarly to parameter 3 of 3.1.2 the evaluation function es-

timates in a finite neighborhood of squares, directions towards which the player

could possibly place tiles later on in the game.

Sha Huang proposed in [24] another Blokus Duo agent. Only, this time it is imple-

mented in software. More specifically, he uses the Minimax algorithm with alpha-beta

pruning, in conjuction with iterative deepening depth-first search to find the optimal

move. Again, what differentiates this work from others are the parameters used in the

evaluation function. The author implemented two groups of evaluation functions and

Sofia Maria Nikolakaki 37 February 2014

3. RELATED WORK

evaluated their performance. The 1st group comprises three evaluation functions each

one of which is applied in a different stage of the game:

First 3 moves

value = a− b (7)

where, a equals the number of squares between the opponent’s starting point and the

piece before placing it and b equals the number of squares between the opponent’s starting

point and the piece after placing it.

Moves 4 to 16

value = 3 ∗ c+ 5 ∗ d+ 2 ∗ e (8)

where, c denotes the number of unit squares of the piece to be placed, d shows the player’s

incremental number of corners after placing the piece and e, the opponent’s decreasing

number of corners after placing the piece

Moves 17 until the end

value = 3 ∗ c+ 3 ∗ d+ 4 ∗ e (9)

where, c, d and e are the same as the previous equation.

The 2nd group consists of only one evaluation function, that was inspired by the game of

Go. More specifically, it introduces the valid grids factor that computes squares where

the player can place a new piece:

value = 10 ∗ a− 5 ∗ b+ 10 ∗ c+ d (10)

where, a equals the number of squares between the opponent’s starting point and the piece

before placing it and b equals the number of squares between the opponent’s starting point

and the piece after placing it, c indicates the opponent’s decreasing number of corners

after placing the piece and d is the difference of valid grids between the two players.

Experimental results showed that the 2nd group, that is actually a single evaluation

function outperformed the 1st group in all cases.

Sofia Maria Nikolakaki 38 February 2014

3.2 Open source Go MCTS implementations

3.2 Open source Go MCTS implementations

The MCTS algorithm was first applied on Go computer players (Gelly et al. in [25] with

their program MOGO), where it performed exceptionally well compared to other algo-

rithms. Since then, many have created UCT-based Go players and others have dedicated

their time into enhancing their agents, by applying optimizations or different techniques.

Therefore, we considered it useful to study such approaches that have been evaluated

over and over again, in order to comprehend better how certain MCTS variations work

and identify which of these are proven to be the best. Both of the UCT-based Go im-

plementations described in this section, are open source codes that come with respective

documentation.

3.2.1 Fuego 1.1 Version

The Go computer player, named Fuego was the first to beat a top human professional at

a 9x9 Go. Before searching to find an optimal move for the current board status, Fuego

will try and lookup the move in the Go book. In case that does not generate a move, a

search is conducted. Note, that Fuego can perform a UCT search, One-ply Monte Carlo

search or no search at all and select a move according to a policy. However, we will focus

on the UCT approach since it is the main purpose of this thesis. The Top level search

architecture comprises the following stages:

1 The UCT tree is initialized.

2 The UCT search is performed by repeatedly playing games, while gradually the

UCT tree is build. When the tree cannot be further expanded the search is com-

pleted.

3 In the end, game states with low count are pruned and the best move sequence is

found.

We emphasize on steps 2 and 3 of 3.2.1, since step 1 is quite trivial.

UCT search

The UCT search is conducted as follows. The PlayGame() function is called in a re-

current manner until the UCT tree cannot be further expanded. The subfunctions that

Sofia Maria Nikolakaki 39 February 2014

http://fuego.sourceforge.net/fuego-doc-1.1/index.html

3. RELATED WORK

interest us the most during the PlayGame() are: 1)PlayInGame(), 2)PlayoutGame(),

3)UpdateValues()

- PlayInGame(): is responsible for expanding nodes in the UCT tree. It stops

expanding nodes when a proven win/loss occurs. In other words, PlayInGame()

executes the selection 2.7.3.1 and expansion 2.7.3.2 steps of the MCTS algorithm.

First, it generates all legal moves and creates their children. Then it selects one

child and executes this move in the UCT tree. The child selection is performed

according to the UCT Bound Formula:

UCTBound = X̄j + C ∗

√
logn

Tj(n)
= Estimated move value+ UCTbias (11)

For the calculation of the Estimated move value (EMV) or X̄j they use a combi-

nation of Move and RAVE values, while for the calculation of the UCTbias they

compute:

UCTbias = C ∗

√
2 ∗ log visits

1 + plays
(12)

where, constant C equals 0.7, visits denotes the number of times the node was

visited and plays the number of times the move participated in a playout

- PlayoutGame(): The PlayoutGame() function is performed out of the UCT

tree and corresponds to the simulation phase of the MCTS algorithm 2.7.3.3. The

playout phase repeatedly produces moves until a null move is generated i.e. has

reached a terminal game state. The move generation is not done in a random

manner but according to a series of specifications that the placed tile must meet.

This is the playout policy.

- UpdateValues(): During this phase all appropriate nodes of the tree should be

updated to the new statistics and RAVE values.

The above were derived from the study of Grace I. Lin in [26]

3.2.2 Pachi 10.0 Version

In his Master’s Thesis [27] Petr Baudĭs proposed Pachi, a Go computer player that

currently competes in competitions and ranks among the best players. They have im-

plemented an MCTS-based approach and enhanced it with a variety of published and

Sofia Maria Nikolakaki 40 February 2014

3.2 Open source Go MCTS implementations

original methods. Also, they aim to resolve some of the issues that arise from information

sharing techniques. In this section we will describe some of the techniques employed by

Pachi, focusing on those that are not intended only for the game of Go. More specifi-

cally, these methods are: 1)Simulation policy, 2)Prior Values, 3)RAVE, 4) Information

Sharing, 5)Situational Information Sharing, 6)Horizon effect:

• Simulation policy: The typical simulation policy in MCTS suggests to randomly

select moves 2.7.3.3. Pachi uses a biased simulation policy πs, until a terminal state

is found. This policy comprises several Go heuristics, applied in a fixed order. The

first one matching is the one eventually applied. During the simulation, they do not

intend to minimize only their prediction error, but the opponent’s too to achieve

combined error minimization.

• Prior Values: Prior Values are used to avoid the overhead of expanding all unvis-

ited nodes at least once, since many of them are bad moves. In order to first explore

moves that are probably good, a constant UCB value is assigned to all newly cre-

ated nodes, such that if a move appears promising it will be further explored before

others. The assigned constant value is computed, based on a set of heuristics that

perform a static evaluation of the move. Furthermore, they use the progressive bias

technique to apply heuristics that determine the number and the results of virtual

simulations, eventually combined with the real ones.

• RAVE: During the MCTS execution, certain statistics and values are propagated to

specific nodes. RAVE extends this information to a bigger class of nodes. However,

it does not propagate only simulation results, but AMAF expectations too i.e.

expectations that concern the node under study which has at any point contributed

to the result of any random simulation

• Information Sharing: To achieve information sharing they applied the following

methods:

- Situational Information Sharing: In case most of the simulations performed

for a move converge towards a conclusion, the score threshold can be adjusted

accordingly.

Sofia Maria Nikolakaki 41 February 2014

3. RELATED WORK

- Horizon effect: There are certain situations, such as when the result of a move

is not currently clear, where AMAF results are biased and may result in the

selection of a wrong move. They suggest enhancing the heuristics to overcome

such adverse cases.

- Local value: They assign a domain dependent value to a local possition to

estimate its local efficacy.

• In-Tree Parallelization: They have implemented lockless in-tree parallelization,

where searches and simulations occur simultaneously by multiple threads.

• Criticality: The use of criticality allows to focus on powerful areas of the board.

Criticality accumulates data that indicate dominance in final positions and corre-

lates them with the probability of winning.

One of the most interesting features of Pachi is that it does not take into consideration

the UCB child selection policy, but only uses RAVE values. They also do not perform

any pruning on the tree

Sofia Maria Nikolakaki 42 February 2014

Chapter 4

Implementation

The whole project was implemented with C programming language, as no object-oriented

overhead was required. Also, it is within the scope of this thesis to model algorithms

for hardware implementation, hence we needed our program to have an abstraction level

close to the case of embedded hardware. Each section of this chapter comprises two

subsections, one that details how the software implementation was carried out and one

that studies software in terms of hardware. Note, that we have already implemented

the Blokus Duo components 4.1 and the Minimax with alpha-beta pruning player 4.2 in

hardware. Although it is not in the scope of this thesis to describe in detail how the

hardware was implemented, basic implementation issues are mentioned to predict how

the rest of the players could perform in hardware. In the following subsections we first

present how the Blokus Duo game components were depicted. Next, we describe the

implementations and the potential hardware-based implementations of our three basic

players, Minimax with alpha-beta pruning, Monte Carlo and MCTS.

4.1 Blokus Duo components

The two components of the Blokus Duo game are each player’s tiles and the game board,

that were described in 2.1.2. However, during implementation we considered efficient

ways for their representation, in terms of execution time and memory allocation.

Sofia Maria Nikolakaki 43 February 2014

4. IMPLEMENTATION

4.1.1 Tiles

In the beginning of the game, each player has at his disposal 21 different tiles that can be

flipped and rotated in any manner. Therefore the player does not consider 21 different

tiles, but 168 (21 pieces x 4 rotations x 2 flips). However among these 168 tiles, some are

symmetrical with respect to the x or y axis or sometimes both and thus there can be in

total eight, four, two or one different representations of a specific tile. By eliminating all

duplicates we no longer consider 168 distinct tiles, but 92, thus avoiding examining the

same tiles multiple times. A Blokus Duo tile consists of at the most 5 unit squares, thus

we needed a 5x5 array to be able to depict each one of them.

4.1.2 Game Board

In the Blokus Duo game the board is a 14x14 grid. However, due to the fact that each

tile is represented as an array, we considered the board as a 16x16 grid, since in certain

cases a valid tile position might be found in the bounds of the board. We observed that

we needed a board of size 16x16 to ”place” tiles and to find valid positions on the edges,

but during execution we evaluated the 14x14 squares of the actual board i.e. we did not

increase the number of possible valid positions.

4.1.3 Software Implementation

All tiles are included in an array of integers, with dimensions 21x5x5 i.e. int pieces[21][5][5],

that contains and depicts all basic 21 tiles. To be able to perform rotations we created

another array of integers, with dimensions 8x5x5, i.e. int rotate[8][5][5]. Finally, in order

to evaluate only distinct tiles and eliminate duplicates we created a third array of in-

tegers, with dimensions 92x2 i.e. int pieces dupl2[92][2], where int pieces dupl2[92][1]

indicates the tile’s actual number (from 0 to 20) in the availability register and int

pieces dupl2[92][0] a possible rotation (from 0 to 7). For example pieces dupl2[0][1] equals

0 corresponds to the first of the 92 distinct tiles that is located in position 0 in pieces

array, while pieces dupl2[0][0] equals 0 corresponds to the first of the 92 distinct tiles that

has rotation 0 in the rotate array. Furthermore, we implemented an array of integers,

with dimensions 2x21 i.e. int available[2][21], to store for each player which tiles have

been used and which are still available. In the this section, we refer to the actual global

Sofia Maria Nikolakaki 44 February 2014

4.2 Minimax with alpha-beta pruning player

available array either as available, or as availability register. Finally, we created an array

of integers, with dimensions 16x16 i.e. int board[16][16] to represent the board for the

reasons that were described in 4.1.2.

4.1.4 Hardware Implementation

Similarly to the software, in the hardware implementation each tile is represented by a

7x7x2 array. This representation offered a single cycle determination about whether a

tile fit somewhere on the board. The FPGA’s internal Block RAM-BRAM (90x98) was

used for the storage of the tiles with their distinct rotations (without duplicates). The

distinct rotations of a tile were stored together and in a specific sequential order to ease

the implementation. Furthermore, a lookup table was used, so as to reduce memory

accesses and swiftly index specific tiles. In order to remember which tiles had been used

and which were still available, a 21-bit availability register was implemented for each

player. Finally, the board was depicted by a 16x16x2 array. More specifically, the first

two dimensions were set in such way, so as to represent each cell of the actual board

while the last dimension indicated i) if the board cell is empty (00), ii) if the board cell

is occupied by one of the players’ tiles (01) or (10), iii) if the cell can be occupied by a

tile due to a corner-to-corner contact (11).

4.2 Minimax with alpha-beta pruning player

We implemented the basic Minimax algorithm with alpha-beta pruning and used a simple

heuristic, since it was not in the scope of this thesis to find a good Minimax heuristic

function for the Blokus Duo game. The same heuristic function with different weights

was applied in both, the software and the hardware.

4.2.1 Software Implementation

The creation of the Minimax with alpha-beta pruning player was based on algorithm 1.

First, we present the structures that were used in our implementation and then some

basic elements of the Minimax algorithm, but now specifically for the Blokus Duo game.

Sofia Maria Nikolakaki 45 February 2014

4. IMPLEMENTATION

4.2.1.1 Minimax Structures

For the implementation of the Minimax-based player we used two structures. The first

contains all information necessary to describe a move, while the second is a list of moves.

More specifically:

/* Keeps all information necessary to describe a move */

typedef struct {
int x; //coordinate x of the board

int y; //coordinate y of the board

int piece; //number of tile (0-20)

int rotate; //number of rotation (0-7)

} move;

/* This struct is a list of moves, necessary to keep the children of a node. */

typedef struct moves {
move oneMove; //current move of the list

moves *next; //next move

} moves;

4.2.1.2 Minimax Algorithm

In this section we present the basic functions of our Minimax approach, along with a

brief description for each and then, we describe the execution flow of the algorithm.

Basic Functions:

• move doMinimax(): Starts the execution of the Minimax algorithm and returns

the estimated best move of the player. It considers as root of the Minimax tree the

global current state of the game. Therefore, it does not require inputs.

• float getMax(int depth, float alpha, float beta, int piece) : This function

is executed whenever it meets a MAX node in the Minimax tree and requires as

inputs:

Sofia Maria Nikolakaki 46 February 2014

4.2 Minimax with alpha-beta pruning player

- depth: Indicates the depth of the children of the MAX node in the tree.

- alpha and beta: These values are required for the alpha-beta pruning proce-

dure.

- piece: The piece or tile that is in a node of the Minimax tree. This variable is

used in the evaluation function.

The getMax() function first checks whether we have reached a leaf node or a certain

depth of the tree. If this condition is met, it returns the value calculated by the

evaluation function for the given node. Otherwise, it finds all valid moves that

follow the MAX node. These valid moves are the MIN children nodes of the MAX

node and are kept in a list of type moves mentioned in 4.2.1.1. Note, that the

getMax() function considers one MIN child node at a time. In case there are no

children left in the list to evaluate, the getMax() function returns the MAX value

of its children. Furthermore, whenever the alpha-beta pruning condition is met in

any MIN child node, the function returns, thereby terminating the evaluation of

the rest of the node’s children. For example, let us assume that a MIN node has

found that the value 5 is the minimum among its MAX children nodes until then

and that now it is evaluating the next MAX child node. In case the first value

propagated from the leaves to the MIN child node under study is 8, there is no

point in evaluating the rest of the MAX child node’s subtrees, since even if a bigger

value is found to replace 8, the parent MIN node would not consider it, as it has

already found a MAX child node with value 5. Therefore, this MAX child node

prunes the rest of its subtrees without affecting the overall Minimax value.

• float getMin(int depth, float alpha, float beta, int piece) : This function is

similar to the getMax() function 4.2.1.2. The main difference is that now the MIN

value is found and returned, as this function is executed whenever a MIN node is

met. Also, it prunes subtrees and nodes in a different manner that will be clarified

with the following example. Let us assume that a MAX node has found that the

value 8 is the maximum among its MIN children nodes until then and that now

it is evaluating the next MIN child node. In case the first value propagated from

the leaves to the MIN child node under study is 6, there is no point in evaluating

the rest of the MIN child node’s subtrees, since even if a smaller value is found to

Sofia Maria Nikolakaki 47 February 2014

4. IMPLEMENTATION

replace 6 the parent MAX node would not consider it, as it has already found a

MIN child node with value 8. Therefore, this MIN child node prunes the rest of its

subtrees without affecting the overall Minimax value.

• float GreedyEvaluate(int piece): The GreedyEvaluate() function is executed

whenever the algorithm reaches a leaf node or a certain predefined depth of the

Minimax tree. It requires as inputs all parameters that are in the evaluation func-

tion. In our case we only use properties of the piece (tile) that is to be placed, as it

is not in the scope of this thesis to create an optimal Minimax-based player. More

specifically the evaluation function is the following:

value = 0.5 ∗ a− 0.5 ∗ b+ 0.7 ∗ c (13)

where, a is the incremental number of the Minimax player’s corners, b denotes the

reductive number of the opponent’s corners and c shows the number of unit squares

of the piece.

• moves returnAllValidMoves(): This function finds and returns a list of type

moves objects mentioned in 4.2.1.1. These are all valid moves that can be performed

given a current game state.

• int check move(int player, int turn, move m, int gameboard[16][16], int

availability reg[2][21]) : Given a game state and a specific action to be performed,

this function evaluates whether the action can be made or not. More specifically,

for input coordinates, tile and rotation, check move() examines the corresponding

area on the board and determines the validity of the move. In order to do so, it

needs to check a 5x5 area, since the size of the tile is 5x5.

The execution of the Minimax algorithm in our approach begins with the doMinimax()

function. Since the root node of the Minimax tree is a MAX node, doMinimax() calls

getMax(depth,alpha,beta, piece), where depth has a predefined value, alpha has value

−1000, beta has value 1000 and piece has value 1, although it could be anything. Given

that depth is not equal to 0, the following actions happen in getMax():

1. returnAllValidMoves() function creates and returns a list of the root’s MIN children

nodes that represent valid moves in the game.

Sofia Maria Nikolakaki 48 February 2014

4.2 Minimax with alpha-beta pruning player

2. For the first MIN child node of the list, getMax() calls the getMin(depth−1,alpha,beta,piece)

function, where depth−1 is because the MIN child node is one level below the root,

alpha and beta still have values −1000 and 1000 respectively and piece equals the

piece value of the move represented by the first MIN child node.

At this point, given that the depth of the min node is not equal to 0, getMin() performs the

same actions as getMax(), only now returnAllValidMoves() returns a list with the MAX

children nodes of the first MIN node and for the first MAX node in the list getMin()

calls getMax(depth − 1,alpha,beta,piece). This recursion continues until we have either

reached a leaf node or depth equals 0. Then, regardless of whether we are in a MAX or

MIN node, GreedyEvaluate(piece) computes the evaluation function for the specific piece

and MIN or MAX node returnes this value to its parent. Depending on whether the

parent node is a MAX or MIN node, the alpha or beta value is updated respectively. The

parent node will then consider the rest of its children nodes and will keep the maximum

value among these if it is a MAX node, or the minimum value if it is a MIN node. Once,

all children have been evaluated the parent node returns the maintained MAX or MIN

value to his parent node and this process continues, until all children of the root node (all

valid subsequent moves) have been evaluated. Finally, the best of these is returned to the

doMinimax() function. Note, that if an alpha-beta pruning condition is met in a node,

then this node returns its current value without searching the rest of its children. We

do not provide a pseudo-code of the algorithm, because it is based on the one presented

in 1.

4.2.2 Modeling for Hardware Implementation

In this section we present critical points of the software code that indicate hardware

opportunities. In order to do so, we performed profiling of the code using the Linux GNU

GCC Profiling Tool (gprof), we computed the size of the structs used in the software code,

we detected potential parallelism, as well as potential bottlenecks.

4.2.2.1 Code Profiling

The resuts of the code profiling showed that greater time consumption occured in the

check move() function. We expected such a result, due to the fact that the complexity of

Sofia Maria Nikolakaki 49 February 2014

4. IMPLEMENTATION

check move is O(n2), as an 5x5 area of the board is evaluated. Also, knowing whether a

move is valid is essential, since most of the rest of the functions depend on it. Therefore

check move() is called many times in different parts of the algorithm. The next most time

consuming process is executed in the returnAllValidMoves() function. This result can be

also interpreted, as we know that in order to find all valid moves, we need to consider

all remaining tiles, with their respective rotations for each board position. Given that in

the worst case the tiles are 21, the rotations are 8 and the board size is 14x14, it is clear

that 21x8x14x14 iterations are needed to find all available moves, a number that affects

significantly the overall execution time of the algorithm. Furthermore, GreedyEvaluate()

is the next most time consuming process, as besides knowing the units of the tile to be

placed, it requires knowing the available corners of both players before and after placing

the tile. However, counting a player’s available corners on the board is an expensive

process, since a corner might be anywhere on the 14x14 squares of the board.

4.2.2.2 Memory Requirements

In order to determine the memory requirements of the Minimax algorithm, we present the

size of the two structures that are involved in the specific algorithm that were mentioned

in 4.2.1.1. The first is the structure move that consists of four integer values and therefore

has a size of 16 bytes. The second is the linked list moves. Each element in the list contains

an object of type move and a pointer that shows to the next item of the list, hence each

element of the list has a size of 24 bytes. This list contains all valid actions that can

be performed for a certain game state and therefore may utmost contain 21x8x14x14

moves, for the reasons mentioned in 4.2.2.1. However, this is an unrealistic case, as on

average there are 10 available corners for each player (10 squares on the board) and

definitely less than 21x8 tiles to be placed, since this number also contains duplicates as

mentioned in 4.1.1. Therefore, we can estimate that the size of a list of moves will have

approximately a size of (24bytes)x(10corners)x(21tiles)x(4rotations) = 20160 bytes.

4.2.2.3 Potential Parallelism

We mentioned that the most time consuming process of the Minimax algorithm is check-

ing whether a tile fits in a specific position of the board or not. We also explained that

this procedure requires to check a 5x5 area on the board, hence 25 iterations are needed.

Sofia Maria Nikolakaki 50 February 2014

4.2 Minimax with alpha-beta pruning player

However, each square of the 5x5 area on the board can be evaluated independently from

the rest, since we do not need a previous value to determine its state. Therefore, we can

determine a valid position in a single clock cycle, thus reducing significantly the time

complexity of the check move function. Furthermore, computing the number of corners

for each player can be also parallelized and determined in a single clock cycle, to reduce

the 14x14 sequential checks. However, this would imply a slow clock and instead of a

single clock cycle, perhaps 6 or 7 would be recommended.

4.2.2.4 Potential Bottlenecks

Finding a move that is valid seems to be a potential bottleneck for a hardware implemen-

tation, since it arbitrarily delays the execution of the algorithm. More specifically, check-

ing whether a tile fits in a square of the board requires a single clock cycle. However, we

might evaluate several board positions before finding a valid move and therefore this pro-

cedure needs an arbitrary number of clock cycles. Note, that in an extreme case where 10

tiles are left and none of them fits in the board, we will need (10tiles)x(8rotations)x14x14

= 15680 clock cycles to realize it. Also, Minimax is a recursive algorithm and this fact

inevitably limits the amount of parallelism that can occur.

4.2.3 Hardware Implementation

In the hardware implementation Minimax was performed in the Minimax Core Module,

shown in Figure 4.1. The Minimax Core Module comprises of multiple subsystems.

The first stage of the algorithm is implemented in the MetaData Module. This module

generates new tiles when requested, after the board is updated with an opponent move.

In the beginning, a first possible move is produced according to the first available tile that

is found in the tile availability vector. Next, the control, shown in Figure 4.2, activates

the Move Module in order to find for a given tile, the first valid move on the board. This

move indicates that a new game state should be defined and pushed into the stack for

future use. A game state will contain all essential information that not only describe

the state but also provide information about the sequence of the moves that were made.

Therefore a game state consists of the previous state of the board before placing the new

move, the tile and rotation that are used in the new move, the coordinates of the board

where the placement will occur and finally two values used for the alpha-beta pruning.

Sofia Maria Nikolakaki 51 February 2014

4. IMPLEMENTATION

Simultaneously the board is updated according to the new game state. This process

continues iteratively until a terminal game state is met. Then the Evaluation Module

calculates the corresponding evaluation score. The main factors that are taken under

consideration for the calculation of the position score are: i) the incremental number of

corners of the player after placing the tile, ii) the reductive number of corners of the

opponent after placing the tile and iii) the new score after placing tile.

Then using the stack of game states, the respective alpha or beta value or none is updated

depending on whether we are in a Max or Min node. Whenever all the outputs of a game

state have been considered the corresponding state is popped from the stack and the

evaluation score, as well as the state are propagated to the Best Module. This stage will

be repeated until the current game state contains at least one move in the move set and

the pruned condition of the Minimax algorithm is not met. Additionally, in case the state

popped from the stack is the root of the search tree, the move that generated the current

sub-tree will be kept along with the evaluation score. As a result, after the search process

has been completed the game state at the root of the search tree will contain the best

move found and will be returned as a response to the opponent. In order to calculate

all possible outputs, both players need to be considered. Whenever it is the opponent’s

turn to play, the board is flipped and the respective tile availability vector is taken into

consideration.

Figure 4.1: Minimax core module.

Sofia Maria Nikolakaki 52 February 2014

4.3 MCTS player

Figure 4.2: Minimax controller’s FSM

4.3 MCTS player

In this section we describe our basic MCTS-based player that uses the UCB1 selection

policy (UCT algorithm). We present the software implementation and discuss possible

opportunities for hardware implementation.

4.3.1 Software Implementation

The creation of the MCTS player was based on algorithm 2. First, we present the

structures that were used in our implementation and then some basic elements of the

MCTS algorithm, specifically for the Blokus Duo game.

4.3.1.1 MCTS structures

For the implementation of the MCTS-based player we used five structures. More specif-

ically:

Sofia Maria Nikolakaki 53 February 2014

4. IMPLEMENTATION

/* Keeps all information necessary to describe a move */

typedef struct {
int x; //coordinate x of the board

int y; //coordinate y of the board

int piece; //number of tile (0-20)

int rotate; //number of rotation (0-7)

} move;

/* Keeps all information necessary to describe the statistics of a move i.e. how many

times it participated in a playout and its overall value */

struct move stats {
int playouts; //number of playouts in which a node has participated

float value; //the current overall value of a node

} ;

/* Keeps all information necessary for a node in the UCT tree. We need to maintain

information about the node’s statistics, its position in the tree in relation to the other

nodes, the actual move that the node represents, whether has been expanded at least

once and its depth in the tree */

struct tree node {
struct move stats data; //statistics of the tree node

struct tree node *parent, *sibling, *children; //position of the node in the tree

move coord; //the move that is represented by the tree node

bool is expanded; //shows whether the node has been expanded once or not

unsigned short depth; //the node’s depth in the tree

} ;

/* Keeps all information necessary for the UCT tree used in the MCTS algorithm. We

need to remember the board and availability register that are updated according to the

selected path, as well as the root of the tree that maintains the rest of the tree structure*/

struct tree {
int availability reg[2][21]; //the UCT tree availability register

Sofia Maria Nikolakaki 54 February 2014

4.3 MCTS player

int gameboard[16][16]; //the UCT tree game board

struct tree node *root; //the root of the UCT tree that keeps the tree structure

int max depth; //the max depth to which the UCT tree has reached

} ;

/* The selected path is created during the selection phase and it inserts the nodes with

the highest UCB1 value. All moves inserted in this list are considered as executed by the

UCT tree. */

struct selected path {
int player; //player that performed this move of the selected path

int turn; //the UCT tree game board

struct tree node* current; //node of the game tree inserted in the selected path

struct selected path *next; //next node of the selected path

} ;

4.3.1.2 MCTS Algorithm

In this section we present the basic functions of our MCTS approach, along with a brief

description for each and then we describe the execution flow of the algorithm.

Basic Functions:

• void tree init(int player, int turn): This is the first function called during

the MCTS algorithm. It creates the UCT tree based on the actual game status.

More specifically, the UCT gameboard and availabiity reg are initialized with the

current values of board and available array of the actual game. The root of the tree

is also determined along with its children. More specifically, given the current actual

game state, all possible moves that can be performed in the next turn are found and

inserted in a list. The moves in this list are the root node’s children. Apart from

its children, the root node does not contain any other useful information. Once the

tree init() function has been executed the global UCT tree has been created and

the first leven of the tree contains all valid moves that can be performed in the next

round.

Sofia Maria Nikolakaki 55 February 2014

4. IMPLEMENTATION

• struct selected path *play in tree(int player, int turn): This function per-

forms the selection and the expansion phase of the MCTS algorithm 2.7.3.1 and 2.7.3.2

respectively. Therefore it returns a selected path that begins from the root of the

UCT tree and reaches a leaf node and expands a leaf node of the UCT tree. In

order to determine the selected path, play in tree() function traverses the UCT tree

in a certain manner. More specifically, the starting point of the traversal is the root

which is the first node inserted in the selected path. The next node inserted is

the child of the root that has the highest UCB1 value. In the same manner by

considering only children of the nodes already in the selected path, each child with

the highest UCB1 value is added to the selected path until we have reached a leaf

node. As for the expansion phase, if we have visited at least once all of a node’s

children, then the child node with the best UCB1 value is expanded. In any other

case, we should first evaluate once all of the children nodes before expanding either

one of them. Eventually the number of the nodes in the selected path will equal

the depth of the UCT tree.

• struct tree node *select child(struct tree node *node, int player): This

function receives as input a father node and returns the child node with the highest

UCB1 value. However, this requires that all children nodes have been visited at

least once. If this does not apply, then the first unvisited child node found is

returned to be evaluated. In general, this function is used to add nodes to the

selected path.

• float calculate UCB1(struct move stats data, int father playouts): This

function has as inputs the move statistics of a node and its parent’s number of

playouts. According to these values it calculates the UCB1 value 5 and returns

this value. We decided to set the C constant value equal to 0.7 after experimental

tuning.

• int expand node array(int player, int turn, int gameboard[16][16], int

availability reg[2][21]): Given a specific game state, the expand node array()

function returns the number of all valid moves that can be performed in the next

turn. The inputs of the function constitute and describe the game state i.e. whose

turn it is, in which turn is the game, what is the board’s and the availability

Sofia Maria Nikolakaki 56 February 2014

4.3 MCTS player

register’s state. Apart from the number of valid moves, this function also finds which

are these moves and inserts each one of them in a global array, the available moves

array that contains elements of type move.

• int play out tree(struct selected path* selected): This function performs the

simulation phase of the MCTS algorithm and its execution is quite simple. As long

as the game is not over (we have not met a terminal condition) play random moves

i.e. simulate a game scenario by choosing randomly a move in each turn. Once the

simulated game is over the function returns 1 if our player won or −1 if our player

lost.

• move random simulation(int player, int turn, int (*tboard)[16], int (*tavail-

able)[21]) This function simply returns a random valid move for a given game

state.

• void update uctvalues(struct selected path* selected,int value) This func-

tion performs the backpropagation phase of the MCTS algorithm 2.7.3.5. More

specifically, depending on the outcome of the simulation this function updates the

statistics of all UCT tree nodes that participated in the specific playout.

The execution of the MCTS algorithm in our approach begins with the tree init() function

when the UCT tree is initialized appropriately. Then, the play in tree() function executes

the selection phase and returns the selected path of the UCT tree that includes the

children that were found to have the highest UCB1 value. This function also performs

the expansion phase of the MCTS algorithm and either expands the UCT tree if all

children of a node have been visited, or evaluates a child node that has not been yet

searched. Once the play in tree() has returned, the play out tree() function is executed

and starting from the expanded or the unvisited node it performs a game simulation by

executing random moves. When a terminal game condition is met it returns the outcome

of the simulation declaring either a win (returns value 1) or a loss (returns value −1).

Finally, the update uctvalues() function is executed, in order to update the number of

playouts and the value of all the UCT tree nodes that participated in the playout. The

above procedure is performed repeatedly until either we have reached a specific time

limit, or there are no memory resources left due to the size of the UCT tree.

Sofia Maria Nikolakaki 57 February 2014

4. IMPLEMENTATION

4.3.2 Modeling for Hardware Implementation

In this section we present critical points of the software code that indicate hardware

opportunities. In order to do so, we performed profiling of the code using the Linux

GNU GCC Profiling Tool (gprof), we computed the size of the structures used in the

software code, we detected potential parallelism, as well as potential bottlenecks.

4.3.2.1 Code Profiling

The results of the code profiling showed that MCTS and Minimax share common time

consuming functions. Once more, check move() requires the most execution time, fol-

lowed by expand node array() that is similar to returnAllValidMoves() of the Minimax

algorithm. The complexity of these functions has been analyzed in 4.2.2.1. Two other

procedures that appear to be time consuming are placing and removing a move. More

specifically, placing a move requires updating a 5x5 area of the board and the same ap-

plies for removing a move. Therefore 25 iterations are needed and given that moves are

placed and removed many times during the execution of the algorithm, these procedures

occupy a significant percentage of the execution time.

4.3.2.2 Memory Requirements

In order to determine the memory requirements of the MCTS algorithm, we present the

size of the five structures that are involved in the specific algorithm that were mentioned

in 4.3.1.1. Structure move is the same as Minimax and requires 16 bytes. MCTS also

requires keeping statistics of a move , that occurs in structure move stats. These statis-

tics are the number of playouts of a node and its current value. Therefore, structure

move stats has a size of 8 bytes. Furthermore, we have mentioned many times structure

tree node, since it keeps all information necessary to describe and evaluate a node at the

end of the execution of the MCTS algorithm. This structure contains objects of type

move stats, move, as well as a boolean and an unsigned short value. It also contains

pointers that show towards his father node, his siblings and his children, to know the

node’s position in the UCT tree. Therefore, a tree node object initially has a size of 56

bytes, but its size increases significantly when siblings and children are added. Another

important structure of the MCTS algorithm, is the tree. This structure contains the

current board, the availability register, the maximum depth of the tree and an object

Sofia Maria Nikolakaki 58 February 2014

4.3 MCTS player

of type tree node that is the root that holds the whole UCT tree. It is clear, that this

structure requires the most memory which may eventually be prohibitive. Note, that the

size of the tree increases exponentially at each level for the Blokus Duo game. The fifth

and final MCTS structure is the selected path. This is a list that contains two integer

values, a tree node object and a pointer towards the next item of the list. Therefore, its

size varies is determined by the size of the tree node object.

4.3.2.3 Potential Parallelism

As in 4.2.2.3, we can check whether a move is valid in a single clock cycle. The same ap-

plies for placing and removing a move from the board. More specifically, these procedures

need to update a 5x5 area of the board which is performed sequentially in the software

implementation. In hardware this update can occur simultaneously and in a single clock

cycle, since the values to be updated are independent. At this point we should mention

an essential aspect of the MCTS algorithm. Given a specific time limit, MCTS performs

less simulations than the Monte Carlo algorithm, which is understandable, since MCTS

also requires performing actions on the UCT tree, besides executing simulations. As we

will see in our experimental results, the reduced number of simulations might lead to

inaccurate statistical knowledge for a move i.e. bad performance. Some approaches pro-

posed parallelizing the MCTS procedure, in order to address this issue. More specifically,

three parallelisation methods have been proposed: leaf parallelisation, root parallelisation

and tree parallelisation. We will briefly describe each method and decide whether their

implementation in hardware would be efficient.

• Leaf Parallelisation: Leaf Parallelisation is a simple idea that was proposed by

Chaslot et al. in [28]. The idea of their approach is quite simple and suggests that

when we reach a leaf node in the UCT tree, we do not only execute one simulation

for this leaf but multiple ones, to gain more accurate statistics. The issue with this

approach is that the outcomes of the different simulations will be ready in different

time instances. Therefore, the execution will have to wait for the outcome of the last

simulation in order to update the nodes with the new values. Experiments showed

that running 4 simulated games in parallel lasted 1.15 times longer than running

one simulated game and therefore they concluded that plain leaf parallelisation is

an inefficient way of parallelising MCTS.

Sofia Maria Nikolakaki 59 February 2014

4. IMPLEMENTATION

• Root Parallelization: Root parallelisation was also proposed by Chaslot et al.

in [28]. Now, instead of parallelising simulations of a leaf node, the whole MCTS

search is parallelised. More specifically, multiple UCT tree instances are created

and a thread is used per tree. The MCTS algorithm is executed independently for

each tree and there is no information sharing. Once a time limit is exceeded, the

best move is decided after all UCT tree clones have been merged and all scores

have been added. Unlike leaf parallelisation, root parallelisation was quite effective

especially because little information sharing between the trees is required and lo-

cal optimals are avoided. However, root parallelisation needs memory for multiple

UCT trees, that may not be available.

• Tree Parallelisation: Tree parallelisation was also suggested by Chaslot et al. in [28].

This final approach allows running simulateneous games on the same UCT tree and

proved to be the most efficient approach among the three. Note, that each thread

can modify information of a node but mutexes are required to do so effectively.

Unlike Minimax, MCTS is not a recursive algorithm and parallelisation is suggested to

increase the efficiency of the algorithm. Specifically for a hardware implementation, the

simulation phase can be pipelined and multiple simulations can be run concurrently.

Getting more accurate results from the simulation phase will yield better solutions.

4.3.2.4 Potential Bottlenecks

Finding all valid moves is the main bottleneck of MCTS, as in 4.2.2.4. Note, that this

issue can affect dramatically the simultaneous execution of different simulations since

a single simulation can delay the whole procedure. Another bottleneck is the size of

the MCTS tree. As the tree expands, its size increases exponentially and the memory

of an FPGA is not sufficient. Therefore, we recommend implementing the UCT tree

and executing all UCT tree actions in the software side and performing simultaneous

simulations in the hardware side.

Sofia Maria Nikolakaki 60 February 2014

4.4 Monte Carlo player

4.4 Monte Carlo player

4.4.1 Software Implementation

The implementation of the Monte Carlo player was based on the theory of Monte Carlo

simulations presented in 2.5.1. First, we present the structures that were used and then

some basic elements of the MCTS algorithm, but now specifically for the Blokus Duo

game.

4.4.1.1 Monte Carlo structures

We mentioned that during the simulation phase of the MCTS algorithm, a simulation

of a game scenario is executed by selecting random moves from a set of available ac-

tions. A Monte Carlo player practically performs multiple times this phase of the MCTS

algorithm, sums the outcomes of each candidate move and finally selects the one with

the highest score. Due to the fact that our Monte Carlo-based player is similar to the

simulation phase of our MCTS-based player, the structures used in the first case are quite

similar to the ones used in the latter case. More specifically:

/* Stores all moves that are candidates for selection in this round of the game. */

struct node candidates[1000]

/* Keeps all information necessary to describe a move */

typedef struct {
int x; //coordinate x of the board

int y; //coordinate y of the board

int piece; //number of tile (0-20)

int rotate; //number of rotation (0-7)

} move;

/* Defines a node that includes the coordinations of a move and the current score of

that move in order to be able to identify at the end the move with the highest score*/

Sofia Maria Nikolakaki 61 February 2014

4. IMPLEMENTATION

struct node {
move coord; //the move that is represented by the tree node

int score; //the total score for the specific move

} ;

/* Keeps the sequence of moves performed during the simulation. These moves are

performed on our global board, therefore we need the whole sequence in order to undo

these moves once the simulation has terminated. */

struct tree node {
move current; //the move that is represented by the tree node

struct undo sequence *next //sequence of moves we need to remove from the board

} ;

4.4.1.2 Monte Carlo Algorithm

In this section we present the basic functions of our Monte Carlo approach, along with a

brief description for each and then we describe the execution flow of the algorithm.

Basic Functions:

• move playMonteCarlo(int player, int turn): This function triggers the exe-

cution of the Monte Carlo algorithm.

• int expand node arrayMonte(int player, int turn, int gameboard[16][16],

int availability reg[2][21]): Given the current state of the game, this function

finds all candidate moves that can be performed next and stores them in the global

array, struct node candidates[1000].

• int montecarloSimulation(move coord,int player,int turn): This function

receives as input a game state and runs iteratively until a terminal game condition is

met, therefore simulating a game scenario. The move sequence is created randomly

and is kept in a list. Once the simulation is terminated, the moves of the list

are ”unperformed” in order to get the initial condition of the game state and the

outcome of the simulation is returned.

Sofia Maria Nikolakaki 62 February 2014

4.4 Monte Carlo player

The execution of the Monte Carlo algorithm in our approach begins with the playMon-

teCarlo() function. It initially calls expand node arrayMonte() in order to find and store

all candidate moves that are to be evaluated. Then, a random generator selects a move

from the set of the candidate actions. The selected move, along with the current game

state are given to the montecarloSimulation() function so that the simulation for the

specific move can begin. The simulation is performed according to a random policy i.e.

moves are selected randomly. Once a move is selected, it is executed and stored in a list

that contains the sequence up to that time. The simulation continues until there is no

move left to play. Then, we evaluate whether the outcome is a win, loss or draw and

undo the moves that are stored in the sequence list to return to the initial game state.

The montecarloSimulation() function returns the outcome of the simulation to playMon-

teCarlo(), that finds the location of the initially selected candidate move in the struct

node candidates[1000] array and updates its score. We repeat the above procedure until

a predefined time limit is exceeded. Then, the candidate move with the highest score is

found and returned as the Monte Carlo solution.

4.4.2 Modeling for Hardware Implementation

Due to the fact, that the simulation phase of MCTS performs Monte Carlo simulations,

an implementation of these two algorithms in hardware would have many common points.

In fact, differences only exist in actions performed on the UCT tree of the MCTS algo-

rithm. Therefore, in terms of memory Monte Carlo only requires maintaining structures

that keep all information necessary to describe a move and a list that contains a se-

quence of actions performed during the simulation, in case we will need to remove these

actions. As for potential parallelism and potential bottlenecks, they are the same with

those provoked by the simulation phase of MCTS. Many simulations can be executed in

parallel to get accurate results, but finding a valid move may delay by arbitrary clock

cycles the procedure. We do not further analyze modeling Monte Carlo for hardware

implementation, in order to not repeat those that were mentioned in section 4.3.2.

Sofia Maria Nikolakaki 63 February 2014

4. IMPLEMENTATION

Sofia Maria Nikolakaki 64 February 2014

Chapter 5

Optimizations on MCTS

We have already mentioned that the performance of our MCTS algorithm can be im-

proved with the use of several techniques. In this chapter we study the adjustment of

the UCB1 selection policy for the Blokus Duo game and we test the performance of an-

other selection policy too. Furthermore, enhancements in the selection phase are strongly

recommended to create a competitive MCTS-based player. Therefore, we implemented

and examined the First Play Urgency and the Progressive Bias enhancement techniques.

A better simulation method based on an evaluation function is tested too. The last

optimization we tried to integrate into our enhanced player gave a score bonus in the

backpropagation method, but the performance was not increased.

5.1 Selection Policies

The selection policies used by our MCTS-based players use the outcomes of simulated

games up to the current point to find the best move. The selection policies accept values

in the interval of [0; 1]. However, in Blokus Duo, draws may also occur and therefore the

game values may be -1 for a lost game, 0 for a draw and 1 for a won game.

5.1.1 UCB1 Adjustment

The UCB1 policy, mentioned in 5 includes the constant Cp > 0 that has an arbitrary

value. The constant Cp controls the exploration-exploitation trade-off of the search by

giving more or less weight to the upper confidence bound. It is strongly recommended to

Sofia Maria Nikolakaki 65 February 2014

5. OPTIMIZATIONS ON MCTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

Coefficient Cp

V
ic

to
ry

P
er

ce
n
ta

ge
Adjustment of coefficient value Cp

Figure 5.1: Winning percentage for different Cp values

adjust this value since it highly depends on the domain of the problem, the computational

resources and the MCTS implementation. Therefore, we tested different Cp values to find

the most appropriate one for the Blokus Duo game. We conducted several experiments

by setting Cp equal to 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2 and executed the algorithm

for 5 seconds. The results are shown in table 5.1 where the first value of each cell denotes

the percentage of those won of all games and the second one shows the mean value of

all the scores. The most appropriate value appeared to be 1 that balances perfectly the

exploitation and exploration factors.

5.1.2 UCB1-Tuned

Gelly and Wang stated that UCB1-Tuned policy yielded better results that UCB1 al-

though they could not provide theoretical guarantees for the regret of UCB1-Tuned, as

they did for UCB1. Furthermore, the fact that the UCB1-Tuned formula does not re-

quire any values to be adjusted, makes it easy to implement and test. We evaluated the

UCB1-Tuned policy’s performance against an MCTS player that uses the UCB1 policy.

The algorithm was executed for 1, 2 and 5 seconds and for each experimental result 40

Sofia Maria Nikolakaki 66 February 2014

5.2 Selection Phase

Selection Policies 1 sec 2 sec 5 sec

UCB1Tuned
70% 77.5% 82.5%

26.75 26.55 25.64

UCB1
27.5% 17.5% 17.5%

31.95 32.05 32.45

Figure 5.2: Comparison between UCB1 and UCB1Tuned policies. The first value in each

cell denotes the player’s percentage of won games and the second the mean value of all

the scores of the player.

games were played. Of the two values in each cell the first denotes the percentage of won

games under all games and the second the mean value of all the scores. The results are

shown in 5.2. We observe that UCB1-Tuned policy outperforms the UCB1 policy, even

when a small number of simulations is executed.

5.2 Selection Phase

5.2.1 First Play Urgency (FPU)

The First Play Urgency technique is used by many professional MCTS-based players

because it allows exploiting nodes from an early stage of the MCTS algorithm. We created

players with different FPU values to evaluate which one improves the performance. These

values are:

• 10000: A high FPU value encourages exploration and all nodes will be visited at

least once before letting expansion to occur to a sibling node. Setting FPU equal

to 10000 is equivalent to the default selection policy of the MCTS algorithm.

• 0.1: A low FPU value encourages exploitation. However, if the nodes are explored

in a pessimistic manner and a small number of simulations is executed we may get

stuck to a local optimum.

• Heuristic: We considered a heuristic approach for the FPU values. More specifi-

cally, units of a tile can guide the search towards the most urgent moves, since big

tiles are encouraged to be placed first. We know that the UCB1 policy initially

Sofia Maria Nikolakaki 67 February 2014

5. OPTIMIZATIONS ON MCTS

returns values in the interval [-0.5;0.5] and therefore we multiplied the number of

units of a tile with the number 0.1 in order to have comparable values. For example,

if the FPU values had a higher value, then when comparing the UCB1 value of the

visited nodes with the FPU values of the unvisited nodes, we would select those

with the highest value i.e. the unvisited ones, thus encouraging exploration.

We evaluated the three different FPU values and the results are shown in 5.3. The

algorithm was executed for 1, 2 and 5 seconds and for each experimental result 40 games

were played. We observed the following:

1. The comparison between the Heuristic FPU value and the 10000 FPU value showed

that the first outperforms the latter, especially when the execution time is small.

Given that the heuristic FPU value guides the search, it allows exploring promis-

ing moves first right from the very beginning of the execution. However, as time

increases more exploration occurs, more statistics are gathered and we notice that

the performance of the Heuristic FPU values decreases, but not significantly.

2. The comparison between the Heuristic FPU value and the 0.1 FPU value also

showed that the heuristic approach outperformed exploitation. As mentioned above,

when few information about a move is accumulated it is easy for the algorithm to

get stuck to a local optimum.

3. The comparison of the performance of the 0.1 and 10000 values was interesting.

In the first rounds of a Blokus Duo game, there are many first good moves to be

placed (there are 12x5 unit tiles to be placed and only one starting point for each

player). Therefore, if the algorithm detects one or more of these moves and lets

exploitation occur, the results will be better than exploring all moves. However,

as the execution time increases more moves are explored. The results prove that

for a small execution time encouraging exploitation is better than exploration for

the Blokus Duo game, but as time increases exploration could yield more accurate

results.

Sofia Maria Nikolakaki 68 February 2014

5.2 Selection Phase

Player1 vs Player 2 1 sec 2 sec 5 sec

Heuristic vs 10000
92.5% - 0.7% 77.5% - 15% 72.5% - 27.5%

17.32 - 38.37 15.92 - 38.25 16.42 - 35.68

10000 vs Heuristic
10% - 87.5% 10% - 85% 20% - 77.5%

36.62 - 20.15 32.67 - 19.4 30.76 - 19.85

Heuristic vs 0.1
87.5% - 12.5% 72.5% - 25% 72.5% - 27.5%

17.47 - 36.65 19.85 - 35.05 21.36 - 31.67

0.1 vs Heuristic
17.5% - 82.5% 30% - 65% 27.5% - 70%

31.15 - 22.15 30.47 - 23.02 32.24 - 20.45

10000 vs 0.1
32.5% - 55% 30% - 48% 37.5% - 52.5%

26.1 - 25.6 24.9 - 24.34 22.34 - 24.96

0.1 vs 10000
57.5% - 37.5% 52.5% - 40% 47.5% - 50%

25.07 - 28.52 25.47 - 27.72 25.34 - 24.52

Figure 5.3: Comparison between Heuristic, 10000 and 0.1 FPU values. The first value in

each cell denotes the player’s percentage of won games and the second the mean value of

all the scores of the player.

5.2.2 Progressive Bias

Progressive Bias is used to lead the search towards promising moves when few statistics

have been gathered. In order to do so, it requires precise and effective domain knowledge

that may not be always available. Also, computing the heuristic values needed in the

Progressive Bias approach should occupy a negligible percentage of the MCTS execution

time. We decided to test two heuristic approaches which are the following:

• Progressive Bias Function: In this approach we used a function to evaluate

nodes located in the first level of the tree and a simple value for the rest. This

function was formed according to the round of the game since different stages imply

a different approach. More specifically:

– Turn ≤ 16: In the first rounds of the game we need our player to play

defensive and create corners to be flexible on the board. Also, the biggest

tiles should be placed first in the beginning and in the middle of the game,

so we concluded with the following function: 0.5 ∗ a+ 1 ∗ b+ 0.25 ∗ c , where

Sofia Maria Nikolakaki 69 February 2014

5. OPTIMIZATIONS ON MCTS

a denotes the number of units of the tile, b is the increasing number of our

player’s corners, c shows the decreasing number of the opponent’s corners.

– Turn > 16: Towards the end of the game we need to get rid of big tiles, while

preventing the opponent to do the same thing. Therefore, we concluded with

the following function: 1 ∗ a + 0.25 ∗ b + 1 ∗ c , where a denotes the number

of units of the tile, b is the increasing number of our player’s corners, c shows

the decreasing number of the opponent’s corners.

• Progressive Bias Units: In this approach we simply compute the units of the

tile to be placed and set this number as the Progressive Bias value. Therefore, we

do not lose any time in heuristics while guiding the search towards big tiles, that

is essential in the Blokus Duo game.

We evaluated the two different Progressive Bias approaches against a normal UCT

player and the results are shown in tables 5.4 and 5.5. The algorithm was executed for

1, 2 and 5 seconds and for each experimental result 40 games were played. Of the two

values in each cell the first denotes the percentage of won games under all games and the

second the mean value of all the scores. We observed the following:

1. Although computing the values of the Progressive Bias function occupied a no-

ticeable percentage of the MCTS execution time, the enhanced player performed

slightly better than the normal one. This indicates that eventhough the heuristic

used is probably not the most efficient one, it still increases the performance of the

player.

2. Simply considering the units of a tile is not sufficient since there is no information

about the state of the game board.

5.3 Simulation Phase

The default MCTS player executes simulations that select and play moves randomly.

This approach explores many actions and evaluates a variety of game scenarios, but does

not focus on the ones that will yield the best results. Therefore, we decided to apply

an evaluation function to select moves to bias the search towards moves that seem more

promising.

Sofia Maria Nikolakaki 70 February 2014

5.3 Simulation Phase

Progressive Bias 1 sec 2 sec 5 sec

Progressive Bias Function
50% 52.5% 55%

28.92 30.2 28.67

UCT
50% 37.5% 40%

28.45 26.92 30.05

Figure 5.4: Comparison between the UCT algorithm enhanced with the Progressive Bias

technique that uses the evaluation function and the normal UCT algorithm. The first

value in each cell denotes the player’s percentage of won games and the second the mean

value of all the scores of the player.

Progressive Bias 1 sec 2 sec 5 sec

Progressive Bias Units
35% 37.5% 40%

33.52 33.95 30.75

UCT
57.5% 60% 47.5%

26.75 29.42 29.57

Figure 5.5: Comparison between the UCT algorithm enhanced with the Progressive Bias

technique that counts the units of the tile and the normal UCT algorithm. The first

value in each cell denotes the player’s percentage of won games and the second the mean

value of all the scores of the player.

Sofia Maria Nikolakaki 71 February 2014

5. OPTIMIZATIONS ON MCTS

Evaluation Function 1 sec 2 sec 5 sec

Evaluation Function Heuristic
95% 97.5% 92.5%

22.15 19.72 22.42

UCT
0.25% 0.25% 0.5%

51.35 53.35 54.4

Figure 5.6: Comparison between the UCT algorithm enhanced with the Evaluation Func-

tion technique that uses the a heuristic function and the normal UCT algorithm. The

first value in each cell denotes the player’s percentage of won games and the second the

mean value of all the scores of the player.

5.3.1 Evaluation Function

Besides the Progressive Bias technique, we can also use domain knowledge for the simula-

tions executed in the simulation phase of the algorithm to avoid unrealistic and inefficient

game scenarios. More specifically, during the simulation we do not select moves randomly,

but play moves that maximize some value. These values are the same as in Progressive

Bias 5.2.2 since we decided to use simple heuristics that would not occupy a significant

amount of the execution time. We evaluated the two different simulation approaches

against a normal UCT player and the results are shown in tables 5.6 and 5.7. The algo-

rithm was executed for 1, 2 and 5 seconds and for each experimental result 40 games were

played. Of the two values in each cell the first denotes the percentage of won games under

all games and the second the mean value of all the scores. We observed the following:

1. Selecting moves according to heuristics is definitely better than allowing simulations

to choose random ones from the set of available actions. Due to the fact that the

number of executed simulations is usually limited, it is important to know that

they use some bias to consider promising moves and perform rational games. It is

clear, that using heuristics during the simulation policy increases significantly the

performance of the MCTS-based player.

2. In order to get accurate results from the simulations, it is essential to execute as

many as possible. Therefore, little time should be spend to compute heuristics and

more should be devoted to gather statistics.

Sofia Maria Nikolakaki 72 February 2014

5.3 Simulation Phase

Evaluation Function 1 sec 2 sec 5 sec

Evaluation Function Units
97.5% 95% 95%

21.7 20.15 18.82

UCT
0.25% 0.5% 0.25%

53.17 54.62 52.07

Figure 5.7: Comparison between the UCT algorithm enhanced with the Evaluation Func-

tion technique that counts the units of the tile and the normal UCT algorithm. The first

value in each cell denotes the player’s percentage of won games and the second the mean

value of all the scores of the player.

5.3.2 Score Bonus

The result of a Blokus Duo game can indicate a strong or weak win, as well as a strong

or weak loss. In order to evaluate the significance of this piece of information we decided

to implement the Score Bonus technique using two families of scores:

• First family:

• Second family:

We evaluated the two different score bonus approaches against a normal UCT player and

the results are shown in tables 5.8 and 5.9. The algorithm was executed for 1, 2 and 5

seconds and for each experimental result 40 games were played. Of the two values in each

cell the first denotes the percentage of won games under all games and the second the

mean value of all the scores. We observed that both approaches created players inferior

to the normal UCT player. This is probably due to the fact that eventhough the eventual

score does indicate the power of a player, it is a result of a sequence of moves and not

of the first move played. Therefore, it tells us little information about whether the first

move alone was a good one.

5.3.3 Best Combination of Optimizations

In the sections above, the optimized parameters are only investigated for their own. The

combination of two or more optimizations can lead to even better results, although this

is not necessary since the results of a technique may negatively affect the performance

Sofia Maria Nikolakaki 73 February 2014

5. OPTIMIZATIONS ON MCTS

Score Bonus 1 sec 2 sec 5 sec

Score Bonus First Family
42.5% 25% 27.5%

25.1 26.77 28.02

UCT
55% 65% 62.5%

32.35 28.52 31.92

Figure 5.8: Comparison between the UCT algorithm enhanced with the Score Bonus

technique that uses the first family of scores and the normal UCT algorithm. The first

value in each cell denotes the player’s percentage of won games and the second the mean

value of all the scores of the player.

Score Bonus 1 sec 2 sec 5 sec

Score Bonus Second Family
42.5% 37.5% 35%

25.02 26.12 26.22

UCT
57.5% 55% 52.5%

28.02 31.12 29.3

Figure 5.9: Comparison between the UCT algorithm enhanced with the Score Bonus

technique that uses the second family of scores and the normal UCT algorithm. The first

value in each cell denotes the player’s percentage of won games and the second the mean

value of all the scores of the player.

Sofia Maria Nikolakaki 74 February 2014

5.3 Simulation Phase

of another technique. In case, we were interested in creating a highly optimized player

different combinations should have been searched by many trials in different experiments.

However, since this is not the scope of this thesis we decided to apply the UCB1-Tuned

selection policy that has been successful for many players, the FPU technique that uses

the units of the tiles as FPU values, the Progressive Bias heuristic method that computes

the evaluation function and the simulation policy that only considers the units of the

tiles, in order to not occupy time from the execution of the MCTS algorithm.

Sofia Maria Nikolakaki 75 February 2014

5. OPTIMIZATIONS ON MCTS

Sofia Maria Nikolakaki 76 February 2014

Chapter 6

Comparison of players

This chapter presents the results of the comparison studies of the implemented Blokus

Duo players.

6.1 Comparison of UCT with Monte Carlo

This section compares the UCT-based player with the Monte Carlo-based player. In

table 6.1 we see the results when the UCT player is player 1 and, in table 6.2 we see

the results when the Monte Carlo player is player 1. We evaluate both cases to assure

that no player has an advantage that may depend on his turn in the game. In order to

determine the overall performance of each player, nine experiments with different time

limitations were conducted and for each, 40 games were played. Of the two values listed

in each cell the first denotes the percentage of won games under all games and the second

the mean value of all the scores. We observed the following:

1. When the time given to the two players is the same, but small i.e. 1 second, the

Monte Carlo-based player beats the UCT-based player. This is understandable

since Monte Carlo performs more simulations than UCT in the same time period

and this difference greatly affects the player’s performance. UCT has not had time

to gather enough data to compute accurate statistics leading to the selection of bad

moves. However, when both have 5 or 10 seconds to find a move, the performance of

the UCT-based player increases since the execution of more simulations, combined

with the acquired statistical knowledge allows finding better solutions. Also, the

Sofia Maria Nikolakaki 77 February 2014

6. COMPARISON OF PLAYERS

PPPPPPPPPPP
UCT

MC
1 sec 5 sec 10 sec

1 sec
35% - 62.5% 40% - 60% 22.5% - 77.5%

33.02 - 30.62 32.8 - 29.2 36.07 - 27.75

5 sec
57.5% - 37.5% 42.5% - 47.5% 42.5% - 52.5%

32.15 - 33.32 30.07 - 29.55 31.35 - 29.24

10 sec
62.5% - 32.5% 65% - 30% 45% - 47.5%

30.27 - 32.3 30.4 - 30.72 28.01 - 30.63

Figure 6.1: Comparison between Monte Carlo Tree Search and Monte Carlo players when

UCT plays first. Blue indicates UCT and gray indicates MC. The first value in each cell

denotes the player’s percentage of won games and the second the mean value of all the

scores of the player.

UCT player is able to play almost as good as the Monte Carlo player and there is

small statistical difference in the values of won games.

2. It is clear that if we give more execution time to any one, of the two players, that

player has higher winning percentage and a smaller average of total score points.

But although both perform better in such cases, the Monte Carlo-based player yields

better statistical results. Note, that in the first table 6.1, when 10 seconds are given

to the UCT-based player and 1 second is given to the Monte Carlo-based player,

the UCT player has 62.5% winning percentage. However, if the Monte Carlo-based

player is given 10 seconds the UCT-based player is given 1 second, Monte Carlo

has 77.5% winning percentage. One possible interpretation could be that, the UCT

player requires more than 10 seconds to be able to converge to promising moves,

while, the Monte Carlo player has executed enough simulations to find sufficiently

good moves.

3. It seems that the one who plays first, has a small advantage.

Sofia Maria Nikolakaki 78 February 2014

6.2 Comparison of UCT with Minimax

PPPPPPPPPPP
MC

UCT
1 sec 5 sec 10 sec

1 sec
67.5% - 30% 32.5% - 57.5% 32.5% - 60%

28.5 - 34.92 30.2 - 29.42 31.45 - 28.67

5 sec
67.5% - 32.5% 47.5% - 45% 45% - 55%

26.77 - 31.9 31.40 - 35.52 31.07 - 31.4

10 sec
80% - 20% 65% - 25% 60% - 37.5%

27.35 - 38.42 28.02 - 31.27 28.25 - 30.13

Figure 6.2: Comparison between Monte Carlo Tree Search and Monte Carlo players when

MC plays first. Blue indicates UCT and gray indicates MC. The first value in each cell

denotes the player’s percentage of won games and the second the mean value of all the

scores of the player.

6.2 Comparison of UCT with Minimax

This section compares the UCT-based player with the Minimax-based player. In table 6.3

we see the results when the UCT player is player 1 and, in table 6.4 we see the results

when the Minimax player is player 1. We evaluate both cases to be sure that no player

has an advantage that may depend on his turn in the game. Note, that the sequence

according to which Minimax investigates moves, determines its overall performance. If

moves are searched from the best to the worst one, the alpha-beta pruning will let the

algorithm evaluate only useful moves and a good solution will be found early. In the

opposite case the Minimax algorithm will need to search almost the whole tree to find

a good move. Therefore, we let the Minimax-based player to first examine moves that

include big tiles, as in any other case we would expect him to perform poorly. However,

since Minimax benefits from this order of search and to be fair, we also let UCT search

moves that include big tiles first. In order to determine the overall performance of each

player, nine experiments with different time limitations were conducted and 40 games

were played for each result. Of the two values listed in each cell the first denotes the

percentage of won games under all games and the second the mean value of all the scores.

We observed the following:

1. Although we let Minimax search moves in an optimistic manner, it is not enough for

Sofia Maria Nikolakaki 79 February 2014

6. COMPARISON OF PLAYERS

him to play at least competitive. In all cases, the UCT-based player presents better

results, even when he has 1 second of thinking time and Minimax has 10 seconds of

thinking time. In order to interpret the supremacy of the UCT algorithm we need

to recall the complexity of the Blokus Duo game and how Minimax works. More

specifically, a Blokus Duo game instance has an average of 10 available corners for

each player and about 40 tiles to consider. Therefore, 400 available moves need to

be evaluated for a single move. Given the complexity of the tree and that Minimax

should find a solution in a reasonable period of time, he is not able to search beyond

the fourth level of the Minimax tree and therefore cannot play well. The existence

of such large trees led to the creation of the UCT algorithm in the first place.

2. Note, that when Minimax is given 5 or 10 seconds to find a good answer and UCT

is given only 1 second, the winning percentage, as well as the average score of the

first are improved significantly compared to when he is given only 1 second. This is

due to the fact that 1 second allows the algorithm to search until depth 3, which is

clearly not sufficient. However, when 5 and 10 seconds are available to the Minimax

player, the algorithm can reach depth 4 and a better answer is achieved.

3. The improvement in the performance of the Minimax algorithm, when he is given 5

or 10 seconds and UCT is given only 1 second is small, since in both cases Minimax

has still only reached depth 4 and much more time is required for him to move to

depth 5.

6.3 Comparison of Monte Carlo with Minimax

This section compares the Monte Carlo-based player with the Minimax-based player. In

table 6.5 we see the results, when the Monte Carlo player is player 1 and in table 6.6 we

see the results when the Minimax player is player 1. We evaluate both cases to be sure

that no player has an advantage that may depend on his turn in the game. For the same

reasons mentioned in the comparison of UCT and Minimax, the Minimax-based player

first examines moves that include big tiles. In order to determine the overall performance

of each player nine experiments with different time limitations were conducted and for

each 40 games were played. Of the two values listed in each cell the first denotes the

Sofia Maria Nikolakaki 80 February 2014

6.3 Comparison of Monte Carlo with Minimax

XXXXXXXXXXXXXX
UCT

Minimax
1 sec 5 sec 10 sec

1 sec
90% - 10% 77.5% - 17.5% 67.5% - 30%

25.32 - 33.75 25.75 - 30.9 25.92 - 29.12

5 sec
95% - 0.5% 92.5% - 0.25% 92.5% - 0.5%

23.75 - 35.42 26.1 - 35.27 26.83 - 33.67

10 sec
97.5% - 0.25% 95% - 0.25% 90% - 0.7%

23.72 - 40.22 23.16 - 38.86 25.37 - 35.37

Figure 6.3: Comparison between Monte Carlo Tree Search and Minimax players when

UCT plays first. Blue indicates UCT and gray indicates Minimax. The first value in

each cell denotes the player’s percentage of won games and the second the mean value of

all the scores of the player.

XXXXXXXXXXXXXX
Minimax

UCT
1 sec 5 sec 10 sec

1 sec
12.5% - 85% 0.75% - 87.5% 0.75% - 92.5%

31.45 - 22.21 33.6 - 20.24 34.86 - 21.35

5 sec
20% - 77.5% 12.5% - 82.5% 12.5% - 85%

30.56 - 22.76 32.56 - 21.88 32.75 - 20.48

10 sec
37.5% - 62.5% 25% - 72.5% 20% - 77.5%

28.64 - 24.86 29.18 - 24.65 29.69 - 22.26

Figure 6.4: Comparison between Monte Carlo Tree Search and Minimax players when

Minimax plays first. Blue indicates UCT and gray indicates Minimax. The first value in

each cell denotes the player’s percentage of won games and the second the mean value of

all the scores of the player.

Sofia Maria Nikolakaki 81 February 2014

6. COMPARISON OF PLAYERS

PPPPPPPPPPP
MC

Minimax
1 sec 5 sec 10 sec

1 sec
77.5% - 20% 80% - 20% 72.5% - 27.5%

25.32 - 33.75 28.1 - 31.2 30.02 - 33.72

5 sec
85% - 10% 87.5% - 0.25% 70% - 20%

27.67 - 34.27 27.87 - 33.5 29.25 - 32.22

10 sec
95% - 0.5% 92.5% - 0.25% 90% - 0.75%

26.22 - 35.62 29.15 - 34.2 27.35 - 34.22

Figure 6.5: Comparison between Monte Carlo and Minimax players when MC plays first.

Blue indicates Monte Carlo and gray indicates Minimax. The first value in each cell

denotes the player’s percentage of won games and the second the mean value of all the

scores of the player.

percentage of won games under all games and the second the mean value of all the scores.

Due to the fact that the observations are similar to the ones in section 6.2 we will mention

them briefly. It is clear that Monte Carlo outperforms Minimax in all cases for the same

reasons that UCT was better than Minimax. An interesting fact, is that playing with

Minimax, Monte Carlo presents better statistics than those presented by UCT. This is

attributed to the fact that UCT executes less simulations for the same time period.

6.4 Comparison of Enhanced MCTS with UCT

This section compares the Enhanced MCTS-based player with the normal UCT-based

player. In table 6.7 we see the results, when the Enhanced MCTS player is player 1 and

in table 6.8 we see the results when the normal UCT player is player 1. We evaluate

both cases to be sure that no player has an advantage that may depend on his turn in

the game. In order to determine the overall performance of each player nine experiments

with different time limitations were conducted and for each 40 games were played. Of

the two values listed in each cell the first denotes the percentage of won games under all

games and the second the mean value of all the scores. We observed the following:

1. Note, that the Enhanced MCTS-based player presents a much higher winning per-

centage and a much smaller mean score than the UCT-based player. Such a result

Sofia Maria Nikolakaki 82 February 2014

6.5 Comparison of Enhanced MCTS with Monte Carlo

PPPPPPPPPPP
Minimax

MC
1 sec 5 sec 10 sec

1 sec
15% - 72.5% 0.5% - 95% 0.25% - 95%

32.67 - 29.37 33.4 - 27.12 35.17 - 27.55

5 sec
27.5% - 67.5% 0.25% - 92.5% 0.25% - 95%

32.27 - 30.45 34.67 - 28.22 34.07 - 29.12

10 sec
35% - 65% 10% - 90% 0.25% - 97.5%

32.6 - 31.22 34.37 - 29.92 35.27 - 27.85

Figure 6.6: Comparison between Monte Carlo and Minimax players when Minimax plays

first. Blue indicates Monte Carlo and gray indicates Minimax. The first value in each

cell denotes the player’s percentage of won games and the second the mean value of all

the scores of the player.

was expected, since the enhanced player uses a more efficient selection policy and

guides all explorations towards promising moves. On the other hand, UCT uses

the standard UCB1 policy and selects random moves. Therefore, the performance

of the UCT-based player depends on whether some of the random simulations will

yield accurate results. This is clear in cases when UCT has 10 seconds to return

an answer, since then more simulations are executed and his winning percentage is

increased. However, he still remains inferior to the Enhanced MCTS-based player.

2. Again, we see that the player 1 has a slight advantage compared to player 2. Note,

that the statistics of the Enhanced MCTS-based player are slightly decreased when

he plays second.

6.5 Comparison of Enhanced MCTS with Monte Carlo

This section compares the Enhanced MCTS-based player with the Monte Carlo player.

In table 6.9 we see the results, when the Enhanced MCTS player is player 1 and in

table 6.10 we see the results when the Monte Carlo player is player 1. We evaluate both

cases to be sure that no player has an advantage that may depend on his turn in the

game. In order to determine the overall performance of each player nine experiments

Sofia Maria Nikolakaki 83 February 2014

6. COMPARISON OF PLAYERS

`````````````````̀Enhanced MCTS

UCT
1 sec 5 sec 10 sec

1 sec
85% - 15% 82.5% - 15% 85% - 15%

32.37 - 40.97 32.1 - 42.55 30.8 - 45.52

5 sec
80% - 17.5% 82.5% - 12.5% 77.5% - 22.5%

30.87 - 41.17 32.15 - 42.37 32.4 - 42.67

10 sec
92.5% - 0.5% 92.5% - 0.75% 77.5% - 20%

30.7 - 43.55 29.12 - 45.12 29.42 - 56.25

Figure 6.7: Comparison between Enhanced MCTS and UCT players when Enhanced

MCTS plays first. Blue indicates Enhanced MCTS and gray indicates UCT. The first

value in each cell denotes the player’s percentage of won games and the second the mean

value of all the scores of the player.

`````````````````̀UCT

Enhanced MCTS
1 sec 5 sec 10 sec

1 sec
30% - 70% 15% - 80% 0.75% - 87.5%

32.97 - 30.27 40.55 - 27.77 38.75 - 27.02

5 sec
22.5% - 77.5% 17.5% - 75% 0.75% - 90%

38.3 - 27.32 39.9 - 26.77 40.75 - 27.05

10 sec
27.5% - 65% 22.5% - 70% 30% - 70%

35.57 - 27.95 36.25 - 27.37 37.1 - 28.01

Figure 6.8: Comparison between Enhanced MCTS and UCT players when UCT plays

first. Blue indicates Enhanced MCTS and gray indicates UCT. The first value in each

cell denotes the player’s percentage of won games and the second the mean value of all

the scores of the player.

Sofia Maria Nikolakaki 84 February 2014

6.6 Comparison of Enhanced MCTS with Minimax

with different time limitations were conducted and for each 40 games were played. Of

the two values listed in each cell the first denotes the percentage of won games under all

games and the second the mean value of all the scores. We observed the following:

1. The comparison of the two players showed that the Enhanced MCTS-based player

did not perform better than the simple UCT-based player against Monte Carlo.

Note, that the optimizations applied to enhance the MCTS algorithm were all

evaluated against a basic UCT-based player. We can assume that the specific set of

heuristic methods was sufficient to outperform the player against whom they were

tested, but that does not imply that they are always equally effective. In order to

reach the conclusion that a combination of techniques will always yield to a good

result no matter who is the opponent, we need to test these techniques against

many different opponents and accumulate numerous experimental results.

2. The fact that the Enhanced MCTS-based player is as competitive as the simple

UCT-based player against Monte Carlo, does not imply that the two MCTS-based

players are equally efficient. An interesting observation, is that the Enhanced

MCTS -based player has in most cases smaller average score compared to the sim-

ple UCT-based player. In other words, although their overall performance seems

to be the same, the Enhanced MCTS-based player places tiles more efficiently and

achieves a better score.

6.6 Comparison of Enhanced MCTS with Minimax

Experiments were conducted to compare the performance of the Ehanced MCTS-based

player with the Minimax-based player performance. However, due to the fact that there

is no random factor in any of the two algorithms for the same period of time, they return

the same best move. In all cases, the Enhanced MCTS beat Minimax, but for each

combination of time limits the score was either similar or the same. There is no need

to present detailed experimental results, since the results are almost always the same for

the same combination of time limits.

Sofia Maria Nikolakaki 85 February 2014

6. COMPARISON OF PLAYERS

`````````````````̀Enhanced MCTS

MC
1 sec 5 sec 10 sec

1 sec
60% - 37.5% 40% - 57.5% 25% - 75%

26.95 - 32.55 31.12 - 29.1 33.27 - 27.55

5 sec
57.5% - 42.5% 50% - 47.5% 32.5% - 57.5%

27.25 - 31.32 30.62 - 31.15 30.42 - 29.82

10 sec
65% - 35% 47.5% - 52.5% 35% - 62.5%

27.42 - 30.4 30.2 - 30.07 33.65 - 29.35

Figure 6.9: Comparison between Enhanced MCTS and Monte Carlo players when En-

hanced MCTS plays first. Blue indicates Enhanced MCTS and gray indicates Monte

Carlo. The first value in each cell denotes the player’s percentage of won games and the

second the mean value of all the scores of the player.

`````````````````̀MC

Enhanced MCTS
1 sec 5 sec 10 sec

1 sec
57.5% - 42.5% 55% - 42.5% 45% - 52.5%

33.2 - 36.2 32.85 - 36.02 34.62 - 35.12

5 sec
72.5% - 27.5% 55% - 42.5% 55% - 47.5%

29.82 - 38.62 31.4 - 35.75 32.42 - 35.83

10 sec
75% - 20% 67.5% - 30% 62.5% - 35%

31.07 - 38.57 29.67 - 38.2 29.36 - 37.74

Figure 6.10: Comparison between Enhanced MCTS and Monte Carlo players when Monte

Carlo plays first. Blue indicates Enhanced MCTS and gray indicates Monte Carlo. The

first value in each cell denotes the player’s percentage of won games and the second the

mean value of all the scores of the player.

Sofia Maria Nikolakaki 86 February 2014

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis we created four Blokus Duo players. The first was based on the well applied

Minimax algorithm, the following two used the recently proposed MCTS algorithm and

the fourth executed Monte Carlo simulations to find a solution. Comparison of the

performance of all four of our players showed that for the same execution time, the Monte

Carlo-based player performed slightly better that the MCTS-based players, due to the

fact that in the first case, more simulations were executed, leading to more accurate

results. Minimax always performed poorly, since the complexity of the Blokus Duo

game did not allow searching deeper than depth 4 of the game tree. We also tested a

group of optimization techniques to enhance the MCTS-based player. However, they only

increased the player’s performance when the opponent used the simple MCTS approach,

but the same did not apply when playing against Monte Carlo. We did notice though, that

the average score of all games was improved indicating that better moves were made by

the enhanced MCTS player. Last but not least we modeled the software-based players for

hardware implementation. The recursive nature of the Minimax algorithm, encourages

sequential search and renders him less suitable for hardware implementation. On the

other hand, the MCTS and Monte Carlo algorithms offer parallelism, since in both cases

many simulations can be executed concurrently. But the memory requirements necessary

for maintaining the UCT tree of the MCTS algorithm imply that it would be more

efficient to maintain the tree, along with the actions performed on it on the software side

and execute simulations on the hardware side.

Sofia Maria Nikolakaki 87 February 2014

7. CONCLUSION AND FUTURE WORK

7.2 Future Work

The time for completing a diploma thesis is always too short for implementing all ideas

that arise during the work. At the end, three of them are outlined as outlook for future

work. Blokus Duo is a relatively new game and few heuristics have been suggested that

improve a player’s performance. Among these, almost all of them are designed specifically

for Minimax-based approaches and cannot be applied to the MCTS algorithm, since they

would add a prohibitive execution time overhead. However, Minimax performs poorly

in a complex game, such as Blokus Duo and therefore we are interested in finding an

effective group of optimizations appropriate for the MCTS algorithm.

Furthermore, we intend to create a hardware MCTS-based player to evaluate its per-

formance against the hardware Minimax-based player. In order to do so, we plan on

designing an efficient way to find valid moves, that will not require an arbitrary number

of clock cycles, in order to benefit the most from parallelism offered by the MCTS algo-

rithm.

Finally, the Blokus Duo players described in this thesis were implemented to eventually

compare the performance of the Minimax, MCTS and Monte Carlo algorithms. However,

we have acquired valuable knowledge about critical points and tacticts of the game and

we would like to create a Blokus Duo player that is competitive against any optimized

Blokus Duo agent.

Sofia Maria Nikolakaki 88 February 2014

References

[1] Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,

P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree

search methods. Computational Intelligence and AI in Games, IEEE Transactions

on 4(1) (2012) 1–43 3

[2] Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial intel-

ligence: a modern approach. Volume 74. Prentice hall Englewood Cliffs (1995) 12,

15, 18

[3] Salen, K.: Rules of play: Game design fundamentals. The MIT Press (2004) 15

[4] Rasmusen, E., Blackwell, B.: Games and information. Cambridge, MA (1994) 15

[5] Gelly, S., Silver, D.: Monte-carlo tree search and rapid action value estimation in

computer go. Artificial Intelligence 175(11) (2011) 1856–1875 20

[6] Schaeffer, J., Van den Herik, H.J.: Games, computers, and artificial intelligence.

Artificial Intelligence 134(1) (2002) 1–7 21

[7] Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances

in applied mathematics 6(1) (1985) 4–22 23

[8] Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed

bandit problem. Machine learning 47(2-3) (2002) 235–256 23, 25, 31

[9] Agrawal, R.: Sample mean based index policies with o (log n) regret for the multi-

armed bandit problem. Advances in Applied Probability (1995) 1054–1078 23

Sofia Maria Nikolakaki 89 February 2014

REFERENCES

[10] Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.

In: Computers and games. Springer (2007) 72–83 24, 30

[11] Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Machine Learn-

ing: ECML 2006. Springer (2006) 282–293 24, 30

[12] Kocsis, L., Szepesvári, C., Willemson, J.: Improved monte-carlo search. Univ. Tartu,

Estonia, Tech. Rep 1 (2006) 24

[13] Chaslot, G.: Monte-carlo tree search. PhD thesis, PhD thesis, Maastricht University

(2010) 26, 27, 29

[14] Tesauro, G., Rajan, V., Segal, R.: Bayesian inference in monte-carlo tree search.

arXiv preprint arXiv:1203.3519 (2012) 31, 32

[15] Gelly, S., Wang, Y.: Exploration exploitation in go: Uct for monte-carlo go. (2006)

31, 32

[16] Audibert, J.Y., Bubeck, S.: Minimax policies for adversarial and stochastic bandits.

(2009) 32

[17] Bubeck, S., Munos, R., Stoltz, G., Szepesvári, C.: X-armed bandits. arXiv preprint

arXiv:1001.4475 (2010) 32

[18] Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino:

The adversarial multi-armed bandit problem. In: Foundations of Computer Science,

1995. Proceedings., 36th Annual Symposium on, IEEE (1995) 322–331 32

[19] Chaslot, G.M.J., Winands, M.H., HERIK, H.J.V.D., Uiterwijk, J.W., Bouzy, B.:

Progressive strategies for monte-carlo tree search. New Mathematics and Natural

Computation 4(03) (2008) 343–357 32

[20] Winands, M.H., Björnsson, Y.: Evaluation function based monte-carlo loa. In:

Advances in Computer Games. Springer (2010) 33–44 33

[21] Shibahara, K., Kotani, Y.: Combining final score with winning percentage by

sigmoid function in monte-carlo simulations. In: Computational Intelligence and

Games, 2008. CIG’08. IEEE Symposium On, IEEE (2008) 183–190 35

Sofia Maria Nikolakaki 90 February 2014

REFERENCES

[22] Cai, J.C., Lian, R., Wang, M., Canis, A., Choi, J., Fort, B., Hart, E., Miao, E.,

Zhang, Y., Calagar, N., et al.: From c to blokus duo with legup high-level synthesis

36

[23] Altman, E., Auerbach, J.S., Bacon, D.F., Baldini, I., Cheng, P., Fink, S.J., Rabbah,

R.M.: The liquid metal blokus duo design. In: Field-Programmable Technology

(FPT), 2013 International Conference on, IEEE (2013) 490–493 37

[24] Huang, S.: Entwicklung einer künstlichen intelligenz für das strategische 2-personen-

spiel blokus. (2012) 37

[25] Gelly, S., Wang, Y., Munos, R., Teytaud, O., et al.: Modification of uct with

patterns in monte-carlo go. (2006) 39

[26] Lin, G.I.: Fuego go: The missing manual. (2009) 40

[27] Baudi, P.: Mcts with information sharing 40

[28] Chaslot, G.M.B., Winands, M.H., van Den Herik, H.J.: Parallel monte-carlo tree

search. In: Computers and Games. Springer (2008) 60–71 59, 60

Sofia Maria Nikolakaki 91 February 2014

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 The Game of Blokus Duo
	2.1.1 History
	2.1.2 Rules
	2.1.3 Strategy Tips
	2.1.4 Existing Programs

	2.2 Decision theory
	2.2.1 Markov decision processes
	2.2.2 Applications

	2.3 Game theory
	2.3.1 Games
	2.3.2 Game tree
	2.3.3 Combinatorial games

	2.4 Minimax with alpha-beta pruning
	2.4.1 Minimax with alpha-beta pruning Algorithm
	2.4.2 Complexity

	2.5 Monte Carlo Methods
	2.5.1 Monte Carlo simulations
	2.5.2 Uniform sampling in Monte Carlo

	2.6 Bandit-Based Methods
	2.6.1 Multi-armed bandit problems
	2.6.2 Regret
	2.6.3 UCB1

	2.7 Monte Carlo Tree Search
	2.7.1 MCTS Development
	2.7.2 MCTS Characteristics
	2.7.2.1 Benefits
	2.7.2.2 Drawbacks

	2.7.3 MCTS Algorithm
	2.7.3.1 Selection
	2.7.3.2 Expansion
	2.7.3.3 Simulation
	2.7.3.4 Backpropagation
	2.7.3.5 Final move selection

	2.7.4 Upper Confidence Bounds for Trees - UCT
	2.7.5 MCTS Enhancements
	2.7.5.1 Selection phase
	2.7.5.2 Simulation phase

	3 Related Work
	3.1 Blokus Duo
	3.1.1 Blokus Duo MCTS approach
	3.1.2 Blokus Duo Minimax based agents

	3.2 Open source Go MCTS implementations
	3.2.1 Fuego 1.1 Version
	3.2.2 Pachi 10.0 Version

	4 Implementation
	4.1 Blokus Duo components
	4.1.1 Tiles
	4.1.2 Game Board
	4.1.3 Software Implementation
	4.1.4 Hardware Implementation

	4.2 Minimax with alpha-beta pruning player
	4.2.1 Software Implementation
	4.2.1.1 Minimax Structures
	4.2.1.2 Minimax Algorithm

	4.2.2 Modeling for Hardware Implementation
	4.2.2.1 Code Profiling
	4.2.2.2 Memory Requirements
	4.2.2.3 Potential Parallelism
	4.2.2.4 Potential Bottlenecks

	4.2.3 Hardware Implementation

	4.3 MCTS player
	4.3.1 Software Implementation
	4.3.1.1 MCTS structures
	4.3.1.2 MCTS Algorithm

	4.3.2 Modeling for Hardware Implementation
	4.3.2.1 Code Profiling
	4.3.2.2 Memory Requirements
	4.3.2.3 Potential Parallelism
	4.3.2.4 Potential Bottlenecks

	4.4 Monte Carlo player
	4.4.1 Software Implementation
	4.4.1.1 Monte Carlo structures
	4.4.1.2 Monte Carlo Algorithm

	4.4.2 Modeling for Hardware Implementation

	5 Optimizations on MCTS
	5.1 Selection Policies
	5.1.1 UCB1 Adjustment
	5.1.2 UCB1-Tuned

	5.2 Selection Phase
	5.2.1 First Play Urgency (FPU)
	5.2.2 Progressive Bias

	5.3 Simulation Phase
	5.3.1 Evaluation Function
	5.3.2 Score Bonus
	5.3.3 Best Combination of Optimizations

	6 Comparison of players
	6.1 Comparison of UCT with Monte Carlo
	6.2 Comparison of UCT with Minimax
	6.3 Comparison of Monte Carlo with Minimax
	6.4 Comparison of Enhanced MCTS with UCT
	6.5 Comparison of Enhanced MCTS with Monte Carlo
	6.6 Comparison of Enhanced MCTS with Minimax

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	References

